期刊文献+

扩展容积卡尔曼滤波定位技术研究 被引量:7

Location Technology Based on the Extend Cubature Kalman Filter
在线阅读 下载PDF
导出
摘要 为提高被动定位技术的精度与环境适应性,本文提出运用一种新的非线性滤波方法—扩展容积卡尔曼滤波算法进行多角度传感器目标定位;它首先利用EMD(经验模态分解)算法对目标的量测噪声协方差矩阵进行估计;然后,将过程噪声协方差和量测噪声协方差融入循环过程;同时,为保持算法的稳定性和正定性,利用求平方根的形式对算法改进。通过对扩展容积卡尔曼滤波与UKF(不敏卡尔曼滤波)算法跟踪目标的结果进行比较,在运算复杂度与UKF相当的前提下,扩展容积卡尔曼滤波算法不仅可以对未知量测噪声情况下的目标进行跟踪,而且显著提高了被动定位的精度。 To improve the accuracy of passive positioning technology and its environmental adaptability,a new nonlinear filter method Extend Square-root Cubature Kalman Filter(SCKF) is offered for multi-station passive location with three moving angle-measured sensors' measurements.Firstly,Empirical Mode Decomposition(EMD) algorithm is used to estimate measurement noise covariance.And then the covariance of the procession noise and measurement noise is brought into the circle procession;At the same time,Cubature Kalman filter(CKF) is improved by the way of square root to keep the stability and positivity,and the results of tracking by Extend SCKF are compared with the results by Unscented Kalman Filter(UKF).By the tracking results to the velocity of the target,Extend SCKF algorithm can not only track the target with unknown measurement noise,but also improve the passive position precision remarkably with the same complexity to UKF.
出处 《光电工程》 CAS CSCD 北大核心 2012年第4期37-43,共7页 Opto-Electronic Engineering
基金 "泰山学者"建设工程专项经费资助
关键词 测角传感器 容积卡尔曼滤波 经验模态分解 被动定位 angle-measured sensor Cubature Kalman filter EMD passive location
  • 相关文献

参考文献12

二级参考文献76

共引文献487

同被引文献85

  • 1孙妍,鲁涤强,陈启军.一种基于强跟踪的改进容积卡尔曼滤波器[J].华中科技大学学报(自然科学版),2013,41(S1):451-454. 被引量:15
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:295
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4皮旷怡,马孜,徐慧朴.未知环境下的移动机器人定位及实时避障[J].控制工程,2007,14(B05):162-165. 被引量:3
  • 5何燕,尹蕾,胡捍英.用残差加权对抗NLOS误差的移动定位算法[J].无线电通信技术,2007,33(5):35-37. 被引量:1
  • 6Yan Wang, Yuanwei Jing, and Zixi Jia. An indoor mobile localization strategy for robot in NLOS environment [J].Intemational Journal of Distributed Sensor Networks, 2013: 1-8.
  • 7Velimirovic A S, Djordjevic G L, Velimirovic M M, et al. Fuzzy ring-overlapping range-free (FRORF) localization method for wireless sensor networks [J]. Computer Communications, 2012, 35(13): 1590-1600.
  • 8Jihua Zhu, Nanning Zheng and Zejian Yuan. An improved technique for robot global localization in indoor environments [J]. International Journal of Advanced Robotic Systems, 2011, 8(1): 21-28.
  • 9Jing L, Vadakkepat P. Interacting MCMC particle filter for tracking maneuvering target[J]. Digital Signal Processing, 2010, 20(2): 561-574.
  • 10Hu J S, Chan C Y, Wang C K, et al. Simultaneous Localization of a Mobile Robot and Multiple Sound Sources Using a Microphone Array[J]. Advanced Robotics, 2011, 25(1-2): 135-152.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部