期刊文献+

Web日志挖掘中的会话识别方法研究 被引量:4

Research on Method of Session Identification in Web Log Mining
在线阅读 下载PDF
导出
摘要 数据预处理是Web日志挖掘的首要环节,而会话识别是数据预处理中的关键步骤之一。为了更好地实现会话识别、提高会话识别的真实度,从而为后续的模式挖掘工作提供精确的挖掘数据,文中在分析了现有常用的会话识别方法后,提出了优化初始会话集的方法。在该方法中,首先初始会话集的产生采用传统的基于访问时间的方法,然后对初始会话集进行合并和断开操作,生成优化的会话集。最后,采用实验实现了该方法。实验结果表明会话质量得到了提高。 Data preprocessing is the first important in the process of Web log mining.At the same time,session identification plays a key role in data preprocessing.To better realize session identification and prepare for sequential work,propose a new method making use of access time and session reconstruction.In this method,the initial session sets are generated based on the access time.Then,the quality of session sets are optimized using a method of session reconstruction,that is,a method of union and rupture.At last,the method studied is carried out,and experimental results illustrate that the quality of session identification is more efficient.
出处 《计算机技术与发展》 2012年第4期45-49,共5页 Computer Technology and Development
基金 中国民航局科研基金项目(MHRD200808)
关键词 WEB日志挖掘 数据预处理 会话识别 会话重组 访问时间 Web log mining data preprocessing session identification session reconstruction visit time
  • 相关文献

参考文献12

二级参考文献42

共引文献456

同被引文献19

  • 1李雪竹,王锋.Web数据挖掘研究[J].电脑知识与技术(过刊),2007(18). 被引量:2
  • 2刘振宇,徐维祥.多支持度关联规则在库存管理中的应用[J].内蒙古大学学报(自然科学版),2012,43(3):313-318. 被引量:3
  • 3HanJiawei,MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2012:13.
  • 4Shu Wenhui, Daniel T T H. A novel intrusion detection system model for securing Web-based database systems [ C ]//Proc of 25th annual international computer software and applications conference. [s. 1. ] :IEEE,2001:249-254.
  • 5Kirchner M. A framework for detecting anomalies in HTrP traffic using instance-based learning and k-nearest neighbor classification[ C ]//Proc of 2nd international workshop on se- cufity and 8. networks. Karlstad: IEEE, 2010 : 1 -.
  • 6Lee I,Jeong S,Yeo S,et al. A novel method for SQL injection attack detection based on removing SQL query attribute values [ J ]. Mathematical and Computer Modelling, 2012,55 ( 1 ) : 58 -68.
  • 7Das D, Sharma U, Bhattacharyya D K. A Web intrusion detec- tion mechanism based on feature based data clustering [ C ]/! Proc of IEEE international advance computing conference. [ s. 1. ] :IEEE,2009:l124-1129.
  • 8Zhan J, Oommen B J, Crisostomo J. Anomaly detection in dy- namic systems using weak estimators [ J ]. ACM Transactions on Intemet Technology ,2011,11 ( 1 ) : 16-33.
  • 9Spiliopoulou M, Mobasher B, Berendt B, et al. A framework for the evaluation of session reconstruction heuristics in Web-us- age analysis [ J ]. INFORMS Journal on Computing, 2003,15 (2) :171-172.
  • 10Stevanovic D, Vlajic N, An A. Detection of malicious and non- malicious Website visitors using unsupervised neural network learning[ J]. Applied Soft Computing,2013,13 ( 1 ) :698-708.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部