期刊文献+

基于协方差矩阵的运动目标跟踪方法研究 被引量:1

Algorithm Research for Moving Object Tracking Based on Covariance Matrix
在线阅读 下载PDF
导出
摘要 提出了新的运动目标检测和跟踪的方法。首先采用差异累积的方法自适应地更新背景模型,用背景差法进行提取目标。把经过二值化后的视频帧进行分块,设定方块内前景点个数的阈值,接着对方块矩阵进行连通区域合并,从而确定前景点位置。接着提出通过协方差描述算子来跟踪行人的算法。用图像特征的协方差矩阵来表示目标窗口,就可以找到空间特性和统计特性,并在同一个表达式内描述它们之间的关系。通过搜索整个图像找到和当前目标模型的距离最小的区域,得到的最佳匹配区域就是当前帧目标的位置,从而达到跟踪的目的。协方差矩阵将不同形式的特征有效地融合到一起,并且它的维数很小。实验结果表明,算法具有良好的检测效果和实时性能。 The paper sets up a new method about moving object detection and tracking. Firstly, background was updated adaptively using difference accumulation information was detected by background subtraction. Based on the binary result, the image was divided into blocks. Then the threshold was set for the number of foreground pixels. Adjacent regions were combined and foreground regions were located. We propose a new algorithm to track pedestrians using a covariance descriptor. We represent an object window as the covariance matrix of features ; therefore we manage to capture the spatial and statistical properties as well as their correlation within the same representation. We search the whole image to find the region which has the smallest distance from the current object model. The best matching region determines the location of the object in the current frame to achieve the goal of tracking. The covariance matrix enables efficiently fusion of different types of features and modalities, and its dimensionality is small. Experiment results showed that the proposed algorithm was effective and efficient.
出处 《电气自动化》 2012年第2期40-42,共3页 Electrical Automation
关键词 目标检测 目标跟踪 分块法 协方差矩阵 object detection object tracking block method covariance matrix
  • 相关文献

参考文献6

  • 1章毓晋.图象图形科学丛书-图像分割[M]北京:科学出版社,2001179-215.
  • 2Po Gutman,M Velger. Tracking Targets Using Adaptive Kalman Filtering[A].1990.691-699.
  • 3Lin D Q,Miao Z J,Yao S J. Expansion and hydrodynamic properties of cellulose stainless steel powder composite matrix for expanded bed adsorption[J].Journal of Chromatography A,2006.265-272.
  • 4孙志海,朱善安.基于差异积累的视频运动对象自动分割[J].光电工程,2007,34(12):97-103. 被引量:8
  • 5O.Tuzel,F.Porikli,P.Meer. Region covariance:A fast descriptor for detection and classification[A].2006.589-600.
  • 6W.F(o)rstner,B.Moonen. A metric for covariance matrices[J].Control Engineering,1999,(12):45-49.

二级参考文献14

  • 1Porikli Fatih. Real-Time Video Object Segmentation for MPEG Encoded Video Sequences [J]. SPIE, 2004, 5297: 195-203.
  • 2Nascimento Jacinto C. Performance Evaluation of Object Detection Algorithms for Video Surveillance [J]. IEEE Transactions on Multimedia, 2006, 8(4): 761-774.
  • 3Kim Changick. Fast and Automatic Video Object Segmentation and Tracking for Content-Based Applications [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(2): 122-129.
  • 4Foresti Gian Luca. Object Recognition and Tracking for Remote Video Surveillance [J]. IEEE Transactions on Circuits and Systems forVideo Technology, 1999, 9(7): 1045-1062.
  • 5Oboukhova Natalia A. Automatic Segmentation and Tracking of Objects in Video computer System [A]. IEEE Tenth International Symposium on Consumer Electronics [C]. St. Petersburg: IEEE, 2006: 1-4.
  • 6Porikli Fatih. Automatic Video Object Segmentation Using Volume Growing and Hierarchical Clustering [J]. Journal on Applied Signal Processing, 2004, 2004(6): 814-832.
  • 7Clien Baisheng. A Novel Background Model for Real-Time Vehicle Detection [J]. ICSP'O4 Proceedings, 2004, 2: 1276-1279.
  • 8Lin Shin-Ping. A Real-Time Multiple-Vehicle Detection and Tracking System with Prior Occlusion Detection and Resolution and Prior Queue Detection and Resolution [A]. Proceedings of the 18th International Conference on Pattern Recognition [C]. Hong Kong, China: IEEE, 2006, 1: 828-831.
  • 9Bailo G, Bariani M, Ijas P, et al. Background Estimation with Gaussian Distribution for Image Segmentation, a fast approach [A]. Proceedings of the 2005 IEEE International Workshop on Measurement Systems for Homeland Security, Contraband Detection and Personal Safety Workshop [C]. Orlando, FL, USA: IEEE, 2005: 2-5.
  • 10Xie Lei. Robust Vehicles Extraction in a Video-based Intelligent Transportation Systems [J]. 2005 International Conference on Communications, Circuits and Systems, 2005, 2: 887-890.

共引文献7

同被引文献14

  • 1Toreyin B U,Dedeoglu Y,Cetin A E.Flame detection invideo using hidden Markov models[C].Proceedings ofthe IEEE International Conference on Image Processing(ICIP),2005:1230-1233.
  • 2Habiboglu Y H,Gunay O,Cetin A E.Real-time wildfiredetection using correlation descriptors[C].19th EuropeanSignal Processing Conference,2011:894-898.
  • 3Foo S Y.A rule-based machine vision system for fire detectionin aircraft dry bays and engine compartments[J].Knowledge-Based Systems,1995,12(9):531-541.
  • 4Fooladivanda A,Chehrerazi N,Sadri S,et al.Automaticsegmentation of pallet images using the 2-D wavelettransform and YUV color space[C].18th Iranian Conferenceon Electrical Engineering(ICEE),2010:319-324.
  • 5Li Wenhui,Fu Bo.A block-based video smoke detectionalgorithm[J].Journal of Software,2013,8(1):63-70.
  • 6Tuzel O,Porikli F,Meer P.Region covariance:a fastdescriptor for detection and classification[C].Proceedingsof 9th European Conference on Computer Vision,Graz,Austria,2006:589-600.
  • 7Porikli F,Tuzel O,Meer P.Covariance tracking usingmodel update based on lie algebra[C].IEEE Conferenceon Computer Vision and Pattern Recognition,NewYork,2006:728-735.
  • 8Forstner W,Moonen B.A metric for covariance matrices[J].Control Engineering,1999,30(12):45-49.
  • 9李广伟,刘云鹏,尹健,史泽林.基于改进李群结构的特征协方差目标跟踪[J].仪器仪表学报,2010,31(1):111-116. 被引量:9
  • 10赵璐华,彭涛.一种有效的SVM参数优化选择方法[J].制造业自动化,2010,32(9):146-149. 被引量:7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部