期刊文献+

基于稳健统计理论的遥感影像特征估计模型初步研究 被引量:1

Remote Sensing Image Features Estimating Model Based on Robust Statistical Theory and Its Application
在线阅读 下载PDF
导出
摘要 高斯混合密度降解模型 ( GMDD)是一种基于稳健统计理论的层次聚类方法。GMDD的分布模型是假设特征空间是由一组混合的高斯 ( Gaussian)分布组成的 ,然后通过一定优化算法来获得特征空间中与预先假设最符的特征分布 ,并逐步分离出特征空间 ,直到特征空间全部降解为一组特征模式的混合密度分布集。GMDD与传统的统计聚类相比较 ,主要优点有 :特征类别不受限定、抗干扰力强、参数估计与初始无关、考虑密度分布的可变性等。初步探讨了基于 GMDD方法的遥感影像特征估计模型和方法 ( GIFEM) ,并提出基于遗传算法的 GMDD优化模型。 Gaussian Mixture Density Modelling and Decomposition (GMDD) is a hierarchical clustering method based on robust statistical theory. Firstly, GMDD is assumed with a mixture group of Gaussian distribution in feature space, then by optimization algorithm the feature which mostly accord with the assumed distribution is hierarchically extracted from space until all of the features in the space are decomposed to a group of featuring pattern. Compared with conventional statistical clustering methods, GMDD's main outstanding superorities are:(1)Initial number of features does not need to be specified a priori; (2)The proportion of noisy data in the mixture can be large; (3)The parameters estimation of each feature is virtually initial independent; and (4)The variability in the shape and size of the feature densities in the mixture is taken into account. The article presented the model named the GMDD based remote sensing image feature estimation model (GIFEM) , and the model of GA space searching optimization is also presented out.
作者 骆剑承 杨艳
出处 《遥感技术与应用》 CSCD 2000年第1期45-50,共6页 Remote Sensing Technology and Application
关键词 影像特征 遥感 稳健统计理论 GIS Robust statistics, Gaussian mixture density, Image features
  • 相关文献

参考文献8

  • 11,CrowtherP.KnowledgeAcquisitionfromSatelliteImageforGeographicExpertSystems-ShoworTell〔J〕?ProceedingsofInternationalConferenceonModelingGeographicalandEnvironmentalSystemswithGeographicalInformationSystems,1997,2:568~573.
  • 22,FriedlMA,BrodleyCE.DecisionTreeClassificationofLandCoverfromRemotelySensedData〔J〕.RemoteSens,Environ,1997,61:399~409.
  • 33,FischerMM,LeungY.AGenetic-algorithmsBasedEvolutionaryComputationalNeuralNetworkforModelingSpatialInteractionData〔J〕.TheAnnalsofRegionalScience,1998,32:437~458.
  • 45,ClarkGlymour,DavidMadigan,Daryl,etal.StatisticalThemesandLessonsforDataMining〔J〕.DataMiningandKnowledgeDiscovery,1997,1:11~28.
  • 56,ZhuangXinhua,HuangY,PalaniappanK,etal.GaussianMixtureDensityModeling,Decomposition,andApplications〔J〕.IEEETransactionsonImageProcessing,1996,5(9):1293~1301.
  • 67,DaveRN,KrishnapuramR.RobustClusteringMethods:AUnifiedView〔J〕.IEEETransactionsonFuzzySystems,1997,5(2):270~293.
  • 78,HollandJH.AdaptationinNaturalandArtificialSystems〔R〕.UniversityofMichiganPress,AnnArbor,1975.
  • 89,BucklesBP,PetryFE.GeneticAlgorithms〔R〕.IEEEComputerSocietyPress,1994.

同被引文献17

  • 1Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision[M]. 2nd ed. [S. l.]: International Thomson Publishing, 1999.
  • 2Cohen L. On Active Contour Models and Balloons[J]. CVGIP: Image Understanding, 1991, 53(2): 211-218.
  • 3Mclnerney T, Terzopoulos D. T-snakes: Topologically Adaptive Snakes[J]. Medical Image Analysis, 2000, 4(2): 73-91.
  • 4Cohen L, Cohen I. Finite Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131-1147.
  • 5Sethian J A. Level Set Methods and Fast Marching Methods[M]. 2nd ed. [S. 1.]: Cambridge University Press, 1999.
  • 6Pichon E, Tannenbaum A, Kikinis R. A Statistically Based Flow for Image Segmentation[J]. Medical Image Analysis, 2004, 8(3): 267-274.
  • 7Hampel F. Robust Statistics: A Brief Introduction and Overview[M]. Zurich, Switzerland: Seminar fox Statistik,2001.
  • 8Hadiashar B A, Suter D. Motion Segmentation Using Robust Stastics and Spatial Continuity[C]//Proc. of International Workshop on Image Analysis and Information Fusion- Adelaide, Australia: [s. n.], 1997.
  • 9Mohand S A, Djemel Z, Layachi B. A Robust Level Set Approach for Image Segmentation and Statistical Modeling[C]//Proc. of ACIVS'04. Brussel, Belgium: [s. n.], 2004.
  • 10Wang Hanzi. Robust Statistics for Computer Vision: Model Fitting, Image Segmentation and Visual Motion Analysis[D]. Melbourne, Australia: Monash University, 2004.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部