期刊文献+

解剖算子及其一致有界定理

Dissecting Operator and Its Uniform Boundedness Principle
在线阅读 下载PDF
导出
摘要 将泛函分析基本原理拓展到包括一些非线性映射的更大映射类。讨论了实数空间解剖算子的性质,得出其连续性和原点邻域内的零点具有唯一性,非平凡赋范线性空间到线性空间的非线性解剖算子的势不小于线性算子的势。证明了解剖算子下的一致有界定理。 The study on dissecting operators is aimed at expanding functional analysis principle to the more extensive mapping class including some nonlinear mapping. Some properties of dissecting operators on the space of real numbers are discussed. Firstly, uniqueness is obtained on its continuity and null point in neighborhood. Then, we prove that cardinality of nonlinear dissecting operator on non- trivial norm linear space to nontrivial linear space is not less than the cardinality of linear operator, which proves the uniform boundedness principle on dissecting operator.
作者 刘铁 郑亮
出处 《重庆理工大学学报(自然科学)》 CAS 2012年第3期126-129,共4页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(10702017)
关键词 线性空间 赋范空间 解剖算子 一致有界原理 linear space normed space dissecting operator cardinality uniform boundedness prin-ciple
  • 相关文献

参考文献6

  • 1Li Rong lu,Zhong Shuhui,Cui Chengri.New Basic Principles of Functional Analysis(Abstract)[J].J of Yanbian Univ:Natu-ral Science,2004,30(3):157-160.
  • 2李容录,钟书慧,文松龙,崔成日,李林松,金道汉.泛线性广义函数(Ⅰ)(英文)[J].延边大学学报(自然科学版),2007,33(3):157-159. 被引量:1
  • 3Genlfand I M.Generalized Functions I[M].New York:Academic Press,1964.
  • 4Genlfand I M.Generalized Functions II[M].New York:Academic Press,1964.
  • 5Gelfand I M.Generalized Functions[M].New York:Academic Press,1968.
  • 6Li Rong lu.Equicontinuity in nonlinear analysis,to appear[Z].

二级参考文献4

  • 1[1]Li Ronglu,Zhong Shuhui,Cui Chengri.New Basic Principles of Functional Analysis[J].Journal of Yanbian University (Natural Science),2004,30(3):157-160.
  • 2[2]Celfand I M.Generalized Functions[M].New York:Academic Press,1968.
  • 3[3]Barros-Neto J.An Introduction to the Theory of Distributions[M].New York:Marcel Dekker,Inc.,1973.
  • 4[4]H(o)rmander L The Analysis of Linear Partial Differential Operators I[M].Berlin:World Publ Corp,Springer-Verlag,1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部