期刊文献+

基于可见近红外光谱结合不同光谱选择方法检测生姜含水率研究 被引量:2

Determination of Moisture content in Ginger Using Three Variable Selection Methods Combined with Vis/NIR
在线阅读 下载PDF
导出
摘要 快速检测生姜含水率对生姜的存储加工和国际贸易非常重要。本文应用可见近红外光谱快速检测生姜含水率,采集330个生姜的可见近红外光谱(光谱范围350-1800mm),然后用烘干法测定生姜的含水率,把330个生姜样本按照含水率的大小以2:1的比例分成校正组和预测组。应用专业知识法、偏最小二乘法和遗传算法j种光谱选择方法建立生姜含水率的预测模型,其模型的精度比应用全光谱(包含1451个光谱变量)所建立的模型精度高。通过比较,应用遗传算法所得预测模型的效果最好,选定的光谱数和因子数分别是300和6,预测组的相关系数、均方根误差和分别是0.9900和4.4440。 Accurate measurement of ginger moisture content (MC) is critical in marketing, storing, and processing. Dried ginger is likely the most acceptable form of ginger in the local and international market. In this study, Vis/NIR spectroscopy (range from 350 to 1800nm) was used to measure the moisture content of ginger. 330 samples were separated into two groups, as training and validation. Three different approaches for selection variables used to establish the PLS model were tested and compared: variable selection based on expert knowledge, interval PLS and genetic algorithm PLS. In comparison to the full spectrum model (contained 1451 variables), the prediction capability was improved after using variable selection for PLS models and all three variable selection approaches gave similar results. By considering the minimum number of variables and latent variables (LVs), of all the four PLS models, the application of the GA-PLS model could obtain the satisfactory result in this study. The number of selected variables and LVs were 300 and 6, resPectively. The correlation of determination in validation set (R^2) and root mean square error of prediction (RMSEP) by GA-PIS were 0.9900 and 4.4440, respectively.
出处 《中国农机化》 北大核心 2012年第2期132-135,共4页 Chinese Agricul Tural Mechanization
基金 国家自然科学基金资助项目(30760101 30972052) 新世纪优秀人才支持计划资助项目(NCET-09-0168) 江西省科技支撑计划项目(2009BNB05705) 江西省青年科学家(井岗之星)培养 江西省教育厅科学技术研究项目(GJJ08513)
关键词 无损检测 近红外 最小二乘法 Nondestructive detection NIR PLS ginger
  • 相关文献

参考文献11

  • 1Luo,C.,L.Xue,M.Liu,et al.Nondestructive Measurement of Sugar Content in Navel Orange Based on Vis-NIR Spectroscopy,in Computer and Computing Technologies in Agriculture IV,D.Li,Y.Liu,and Y.Chen,Editors.2011,Springer Boston.p.467-473.
  • 2Kuligowski,J.,G.Quintás,S.Garrigues,and M.de la Guardia.Direct determination of polymerized triglycerides in deep-frying olive oil by attenuated total reflectance-Fourier transform infrared spectroscopy using partial least squares regression[J]. Analytical and Bioanalytical Chemistry,2010,397(2):861-869.
  • 3Sundaram,J.,C.V.K.Kandala,C.L.Butts,and W.R.Windham.Application of NIR Reflectance Spectroscopy on Determination of Moisture Content of In-Shell Peanuts:A Non-Destructive Analysis[J]. Transactions of the ASABE,2010,53(1):183-189.
  • 4Jaya,S.,V.K.K.Chari,L.B.Christopher,and R.W.William,Application of NIR Reflectance Spectroscopy on Determination of Moisture Content of Peanuts:A Non Destructive Analysis Method,in2009Reno,Nevada,June21-June24,2009.2009.
  • 5Jing,L.,X.Long,L.Muhua,et al.Determination of moisture content in ginger using PSO combined with Vis/NIR[J]. Advanced Materials Research,2011,320:563-568.
  • 6Sorol,N.,E.Arancibia,S.A.Bortolato,and A.C.Olivieri.Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice:A test field for variable selection methods[J]. Chemometrics and Intelligent Laboratory Systems,2010,102(2):100-109.
  • 7Lin,H.,J.-w.Zhao,L.Sun,et al.Stiffness measurement of eggshell by acoustic resonance and PLS models[J]. Journal of Food Engineering,2011,103(4):351-356.
  • 8薛龙,黎静,刘木华,王晓,罗春生.基于遗传算法的脐橙可溶性固形物的可见/近红外光谱无损检测[J].激光与光电子学进展,2010,47(12):109-113. 被引量:18
  • 9Fei,Q.,M.Li,B.Wang,et al.Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection[J]. Chemometrics and Intelligent Laboratory Systems,2009,97:127-131.
  • 10Shaimukhametova,E.,D.Galimullin,M.Sibgatullin,et al.Application of a genetic algorithm and wavelet analysis to the interpretation of the infrared Fourier spectra of branched polymethylmethacrylate[J]. Bulletin of the Russian Academy of Sciences:Physics,2010,74(7):959-962.

二级参考文献29

  • 1冯军勤,周誉昌,吕华,李海.运用近红外漫反射光谱技术检测中药水分含量[J].大众科技,2006,8(2):46-47. 被引量:15
  • 2邹小波,赵杰文.用遗传算法快速提取近红外光谱特征区域和特征波长[J].光学学报,2007,27(7):1316-1321. 被引量:44
  • 3R.Leardi.Application of genetic algorithm-PLS for feature selection in spectral data sets[J].J.Chemometr.Intell.Lab.Syst.,2000,14(5):643-655.
  • 4R.E.Fan,P.H.Chen,C.J.Lin.Working set selection using second order information for training SVM[J].J.Mach.Learn.Res.,2005,6:1889-1918.
  • 5S.Satanwong,S.Kawano.Rapid determination of fungicide contaminated on tomato surface using the DESIR-NIR:a system for ppm-order concentration[J].J.Near Infrared Spectrosc,2005,13(3):169-175.
  • 6R.Leardi,L.Nrgaard.Sequential application of backward interval PLS and genetic algorithms for the selection of relevant spectral regions[J].J .Chemomelr.,2004,18(11):486-497.
  • 7Qiang Fei,Ming Li,Bin Wang et al..Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection[J].Chemometr.Intell.Lab.Syst.,2009,97:127-131.
  • 8Jagdish C.Tewari,Vivechana Dixit,Byoung-Kwan Cho et al..Determination of origin and sugars of citrus fruits using genetic algorithm,correspondence analysis and partial least square combined with fiber optic NIR spectro.
  • 9Murcia M, Egea I, Romojaro F, et al. Antioxidant evaluation in dessert spices compared with common food additives : Influence of irradiation procedure[ J ]. Jurnal of Agricultural and Food Chemistry, 2004,52 : 1872-1881.
  • 10Rehman Z, Salariya A, Habib F. Antioxidant activity of ginger extract in sunflower oil [ J ]. Journal of the Science of Foodand Agri-cuhural, 2003,83:624 - 629.

共引文献20

同被引文献22

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部