摘要
Diseases are a potential threat to global food security but plants have evolved an extensive array of methodologies to cope with the invading pathogens. Non-host resistance and quantitative re- sistance are broad spectrum forms of resistance, and all kinds of resistances are controlled by extremely diverse genes called "R- genes". R-genes follow different mechanisms to defend plants and PAMP-induced defenses in susceptible host plants are referred to as basal resistance. Genetic and phenotypic diversity are vital in maize (Zea mays L.); as such, genome wide association study (GWAS) along with certain other methodologies can explore the maximum means of genetic diversity. Exploring the complete genetic archi- tecture to manipulate maize genetically reduces the losses from hazardous diseases. Genomic studies can reveal the interaction be- tween different genes and their pathways. By confirming the specific role of these genes and protein-protein interaction (proteomics) via advanced molecular and bioinformatics tools, we can shed a light on the most complicated and abstruse phenomena of resistance.
Diseases are a potential threat to global food security but plants have evolved an extensive array of methodologies to cope with the invading pathogens. Non-host resistance and quantitative re- sistance are broad spectrum forms of resistance, and all kinds of resistances are controlled by extremely diverse genes called "R- genes". R-genes follow different mechanisms to defend plants and PAMP-induced defenses in susceptible host plants are referred to as basal resistance. Genetic and phenotypic diversity are vital in maize (Zea mays L.); as such, genome wide association study (GWAS) along with certain other methodologies can explore the maximum means of genetic diversity. Exploring the complete genetic archi- tecture to manipulate maize genetically reduces the losses from hazardous diseases. Genomic studies can reveal the interaction be- tween different genes and their pathways. By confirming the specific role of these genes and protein-protein interaction (proteomics) via advanced molecular and bioinformatics tools, we can shed a light on the most complicated and abstruse phenomena of resistance.
基金
supported by the National Natural Science Foundation of China (31161140347)