期刊文献+

基于人工免疫有序聚类的视频关键帧提取方法 被引量:9

Video key-frame extraction using ordered samples clustering based on artificial immune
在线阅读 下载PDF
导出
摘要 针对现有的基于无监督聚类的视频关键帧提取方法没有考虑镜头内容的时序性、对初始类的划分较敏感、易陷入局部最优等问题,提出了一种新的基于人工免疫的有序样本聚类算法.在传统人工免疫聚类算法的基础上引入了抗原记忆识别机制及改进了抗体的克隆与超变异机制,并在此基础上给出了基于人工免疫有序聚类的视频关键帧提取方法.该方法将镜头帧序列看成一个入侵机体的抗原序列,然后基于首次应答与再次应答机制依次为每个抗原产生记忆细胞池,最终每个记忆细胞池能识别的邻近抗原对应一个类别并选取距其类中心最近的帧为关键帧.对大量不同类型的视频进行了试验.结果表明,该方法能得到较高的保真度和压缩率,能够十分有效地提取出反映镜头内容变化的关键帧. In view of sensitivity of initial samples division and easy fall into local optimum in existing un- supervised clustering methods of video key-frame extraction without considering temporal order of shot content, a novel ordered samples clustering algorithm was proposed based on artificial immune. Accor- ding to traditional artificial immune based clustering algorithm, memory recognition mechanism for anti- gens was introduced, and clone and hyper mutation mechanism for antibodies was improved. A video key-frame extraction method of artificial immune based on ordered samples clustering was proposed. The image frame sequence in a shot was regarded as an antigen sequence invading the body. Based on the mechanisms of primary response and second response, the memory cell pools for each antigen were ob- tained. The continuous antigens recognized by the same memory cell pool was formed a cluster, and the frame nearest to the cluster center was extracted as a key-frame. The experiments on various videos were completed. The results show that the proposed method has high fidelity and compression ratio, and the key-frames reflecting real shots contents can be extracted effectively.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2012年第2期199-204,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61170126) 江苏省高校研究生科研创新计划项目(CX08B_097Z)
关键词 关键帧提取 人工免疫 有序样本聚类 视频摘要 视频检索 key-frame extraction artificial immune ordered samples clustering video summarization video retrieval
  • 相关文献

参考文献12

  • 1Geetha P,Narayanan V.A survey of content-based vi-deo retrieval[J].Journal of Computer Science,2008,4(6):474-486.
  • 2Truong B T,Venkatesh S.Video abstraction:a syste-matic review and classification[J].ACM Transactionson Multimedia Computing,Communications and Applica-tions,2007,doi:10.1145/1198302.1198305.
  • 3Ciocca G,Schettini R.An innovative algorithm for keyframe extraction in video summarization[J].Journal ofReal-Time Image Processing,2006,1(1):69-88.
  • 4Zhuang Y T,Rui Y,Huang T S,et al.Adaptive key-frame extraction using unsupervised clustering[C]∥Proceedings of the 1998 IEEE International Conferenceon Image Processing.Los Alamitos:IEEE Comp Soc,1998:866-870.
  • 5王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:34
  • 6Man Hua,Peng Jiang.A feature weighed clusteringbased key-frames extraction method[C]∥Proceedings ofthe 2009 International Forum on Information Technologyand Applications.Piscataway:IEEE Computer Society,2009:69-72.
  • 7Liu Dianting,Shu Meiling,Chen Chao,et al.Integra-tion of global and local information in videos for keyframe extraction[C]∥Proceedings of 2010 IEEE Inter-national Conference on Information Reuse and Integra-tion.Piscataway:IEEE Computer Society,2010:171-176.
  • 8Tian Xiang,Yang Haidong,Deng Feiqi.A novel artifi-cial immune network algorithm[C]∥Proceedings of the2006 International Conference on Machine Learning andCybernetics.Piscataway:IEEE Computer Society,2006:2159-2165.
  • 9Li Xianhui,Zhan Yongzhao,Ke Jia,et al.Shot retrie-val based on fuzzy evolutionary ainet and hybrid features[J].Computers in Human Behavior,2011,27(5):1571-1578.
  • 10Graaff A J,Engelbrecht A P.A local network neighbor-hood artificial immune system for data clustering[C]∥Proceedings of the 2007 IEEE Congress on EvolutionaryComputation.Piscataway:IEEE,2007:260-267.

二级参考文献12

  • 1Y. Zhuang, Y. Rui, T. S. Huang, et al. Adaptive key-frame extraction using unsupervised clustering. IEEE Int'l Conf. Image Processing, Chicago, IL, 1998.
  • 2Xiaomu Song, Guoliang Fan. Joint key-frame extraction and object-based video segmentation. IEEE Computer Society Workshop on Motion and Video Computing (WACV/MOTION2005), Breckenridge, Colorado, USA, 2005.
  • 3X. Sun, M. S. Kankanhalli, Y. Zhu, et al. Content-based representative frame extraction for digital video. IEEE Multimedia Computing and Systems, Austin, Texas, 1998.
  • 4A. Hanjalic, H. J. Zhang. An integrated scheme for automated video abstraction based on unsupervised cluster-validity analysis.IEEE Trans. Circuits System Video Technol., 1999, 9(8): 1280~ 1289.
  • 5Gao Qi, C. C ko, Liyanage C de silva. A universal scheme for content-based video representation and indexing. IEEE AsiaPacific Conference on Circuits and Systems (APCCAS 2000 ),Tianjin, 2000.
  • 6Swain M J ,ballard D H. Color indexing. Intl. J, Computer Vision,1991,(7):11-32.
  • 7Mehtre B M. et al. , Color matching for image retrieval,Pattern Recognition Letters, 1995, (16) :325-331.
  • 8Stricker M,Orengo M. Similarity ot color irmages, SP1E, 2420,1995,381-392.
  • 9Kankanhalli M S et al. Cluster-based color matching for image retrieval, Pattern Recognition. 1996,(29):70l-708.
  • 10Zhang Y J. et al. Comparison and improvement of color-based image retrieval techniques. SPIE 3312,1998,371-382.

共引文献91

同被引文献83

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:34
  • 3AYERS D, SHAH M. Monitoring human behavior from video taken in an office environment[ J]. Image and Vision Computing, 2001, 19(12) : 833 - 846.
  • 4XU PENG, XIE LEXING, CHANG S-F, et al. Algorithms and systems for segmentation and structure analysis in soccer video[C]// IEEE International Conference on Multimedia and Expo. Washington, DC: IEEE Computer Society, 2001:721-724.
  • 5PERSE M, KRISTAN M, KOVACIC S, et al. A trajectory-based analysis of coordinated team activity in a basketball game[ J]. Computer Vision and Image Understanding, 2009, 113 (5) : 612 - 621.
  • 6FU Y W, GUO Y W, ZHU Y S, et al. Multi-view video summarization[J]. IEEE Transactions on Multimedia, 2010, 12(7): 717- 729.
  • 7ZHANG J W, WANG F, ZHANG C S, et al. Efficient multi-label classification with hyper-graph regularization[ C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2009:1658 - 1665.
  • 8LIU Q S, HUANG Y C, METAXAS D N. Hyper-graph with sampling for image retrieval[ J]. Pattern Recognition, 2011, 44 ( 10/ 11) : 2255 -2262.
  • 9LUO L, LI B, LI L, et al. Image analysis by discrete radial tchebichef moment[ C]// 2010 International Conference on Measuring Technology and Mechatronics Automation. Washington, DC: IEEE Computer Society, 2010:569-572.
  • 10HUANG D, SHAN C F, WANG Y H, et al. Local binary patterns and its application to facial image analysis: a survey [ J]. IEEE Transactions on Systems, Man, and Cybernetics-part C: Applications and Reviews, 2011, 41(6): 765-771.

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部