期刊文献+

PCA与ICA相结合的语音信号盲分离 被引量:2

Blind separation for speech signal based on PCA and ICA
在线阅读 下载PDF
导出
摘要 针对ICA用于语音信号盲分离时,由于数据量过大、迭代次数过多引起的收敛速度慢的问题,采用一种PCA和ICA相结合的盲分离算法PCA-ICA。通过PCA对混合语音信号进行白化处理,消除了原始各道数据间的二阶相关性。在仿真实验中,采用相似系数矩阵作为评价混合语音信号分离效果的标准,结果表明PCA-ICA算法与ICA算法相比,在达到几乎相同的相似系数矩阵的情况下,迭代次数减少了90%,从而分离速度提高了3倍,有效地解决了ICA分离算法收敛速度慢的问题。 In order to solve the slow convergence problem of ICA based algorithm and high computational cost due to excessive amount data, an blind separation algorithm based on PCA-ICA for speech signal is proposed. PCA is used to remove the second-order correlations among different dimensions of feature from original data. Using simi- larity coefficient matrix as the separation effect standard, the simulation experiment results show that the proposed method can reduce 90% of iterations and is 3 times faster compared with ICA with the same separation accuracy. Thus the ICA-PCA algorithm effectively solves the slow convergence problem of original ICA method.
出处 《计算机工程与应用》 CSCD 2012年第10期124-127,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075008)
关键词 盲源分离 独立分量分析 主成分分析 blind source separation independent component analysis principle component analysis
  • 相关文献

参考文献5

二级参考文献24

  • 1黄高明,杨绿溪,何振亚.基于典范相关分析的时差测向技术研究[J].电路与系统学报,2005,10(5):10-15. 被引量:6
  • 2Jutten C, Herault J. Blind separation of sources, part I : an adaptive algorithm based on neuromimetic architecture [J]. Signal Processing, 1991,24( 1 ) : 1 - 10.
  • 3Comon P. Independent component analysis--a new concept? [J]. Signal Processing, 1994,36( 3 ) :287 - 314.
  • 4Hyvarinen A. Gaussian moments for noisy independent component analysis [ J ]. IEEE Letters on Signal Processing, 1999,6 (6) : 145 - 147.
  • 5Even J, Saruwatari H, Shikano K. Blind signal extraction via direct mutual information minimization E C ]// IEEE Workshop on Machine Learning for Signal Processing. Cancun, Mexico, 2008:49 -54.
  • 6Chien J T, Hsien H L,Furui S. A new mutual information measure for independent component analysis [ C ]// IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, CA, USA, 2008 : 1817 - 1820.
  • 7Duarte L T, Jutten C. A mutual information minimization approach for a class of nonlinear recurrent separating systems [ C ]//IEEE Workshop on Machine Learning for Signal Processing. Thessaloniki, Greece, 2007 : 122 - 127.
  • 8Liu Wei, Mandic D P, Cichocki A. Analysis and online realization of the CCA approach for blind source separation [ J ]. IEEE Transactions on Neural Networks,2007, 18(5) : 1505 - 1510.
  • 9Via J, Santamaria I, Perez J. Deterministic CCA-based algorithms for blind equalization of FIR-MIMO channels [ J ]. IEEE Transactions on Signal Processing, 2007,55 ( 7 ) : 3867 - 3878.
  • 10Li Y O, Wang Wei, Adali T, et al. CCA for joint blind source separation of multiple datasets with application to group FMRI analysis [ C ]//IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, CA, USA,2008 : 1837 - 1840.

共引文献13

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部