期刊文献+

基于遗传算法的入侵检测特征选择 被引量:28

Feature selection of intrusion detection based on genetic algorithm
在线阅读 下载PDF
导出
摘要 针对入侵检测日志数据存在大量不相关特征和冗余特征,导致入侵检测数据集维数较高,检测算法实时性较低的问题,提出一种基于遗传算法的入侵检测特征选择算法。首先删除入侵检测数据集中的不相关特征及冗余特征,构建有效特征集L,并通过偏F检验对特征进一步选择,构成待优化特征集L';然后采用遗传算法对L'进行优化选择,选出最能反映系统状态的特征集L″。仿真实验结果证明,该算法在保证特征分类精度和确保入侵检测漏检率、误检率尽量小的前提下明显提高了入侵检测的效率。 This paper designed a feature selection algorithm to solve the problem that there are many redundant and irrelevant features in the intrusion detection data sets,which leads to the high feature dimension and low efficiency of detection.First,deleted the redundant and irrelevant features in the ID data set,so as to build the effective feature set L.Then,used a partial checkout to make a deeper choice of the feature to build another feature set L′.Finally,used an improved genetic algorithm to optimize L′,and by this way,all features that could best show the state of the current system would be selected.The result of the stimulant experiment shows that it can improve the efficiency of intrusion detection apparently on condition of guarantee to classification accuracy and lower missing detection and wrong detection.
出处 《计算机应用研究》 CSCD 北大核心 2012年第4期1417-1419,1426,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71072131)
关键词 入侵检测 特征选择 偏F检验 遗传算法 intrusion detection feature selection partial checkout genetic algorithm
  • 相关文献

参考文献7

二级参考文献61

  • 1张丽新,王家廞,赵雁南,杨泽红.基于Relief的组合式特征选择[J].复旦学报(自然科学版),2004,43(5):893-898. 被引量:44
  • 2乔立岩,彭喜元,彭宇.基于微粒群算法和支持向量机的特征子集选择方法[J].电子学报,2006,34(3):496-498. 被引量:25
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:79
  • 5于慧敏,徐艺,刘继忠,高晓颖.基于水平集的多运动目标时空分割与跟踪[J].中国图象图形学报,2007,12(7):1218-1223. 被引量:8
  • 6DUDA R O, HART P E, STORK D G. Pattern classification[ M] 2nd ed. San Francisco: WILEY, 2000.
  • 7KIRA K, RENDELL L A. The feature selection problem: Traditional methods and a new algorithm[ C]// Proceedings of Ninth National Conference on Artificial Intelligence. Cambridge: AAAI, 1992:129 - 134.
  • 8BURGES C J C. Geometric methods for feature extraction and dimensional reduction: A guided tour, MSR-TR-2004-55 [ R/OL]. [2009 -04 -01]. http://www. kernel-machines. org/publications/ Burges04.
  • 9LEWIS D D. Feature selection and feature extraction for text categorization[ C]// Proceedings of the Speech and Natural Language Workshop. Morristown: Association for Computational Linguistics, 1992:212-217.
  • 10YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//ICML-1997: 14th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 1997:412 -420.

共引文献89

同被引文献267

引证文献28

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部