期刊文献+

Robustness of quantum discord to sudden death in nuclear magnetic resonance

Robustness of quantum discord to sudden death in nuclear magnetic resonance
原文传递
导出
摘要 We investigate the dynamics of the entanglement and quantum discord of two qubits in liquid state homonuclear nuclear magnetic resonance. Applying a phenomenological description for nuclear magnetic resonance under a relaxation process, and taking a group of typical parameters of nuclear magnetic resonance, we show that when a zero initial state experiences a relaxation process, its entanglement disappears completely after a sequence of so-called sudden deaths and revivals, while the quantum discord retains remarkable values after a sequence of oscillations. That is to say, the quantum discord is more robust than entanglement. We investigate the dynamics of the entanglement and quantum discord of two qubits in liquid state homonuclear nuclear magnetic resonance. Applying a phenomenological description for nuclear magnetic resonance under a relaxation process, and taking a group of typical parameters of nuclear magnetic resonance, we show that when a zero initial state experiences a relaxation process, its entanglement disappears completely after a sequence of so-called sudden deaths and revivals, while the quantum discord retains remarkable values after a sequence of oscillations. That is to say, the quantum discord is more robust than entanglement.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期60-66,共7页 中国物理B(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2010scu23002)
关键词 quantum discord nuclear magnetic resonance CONCURRENCE sudden death quantum discord, nuclear magnetic resonance, concurrence, sudden death
  • 相关文献

参考文献34

  • 1Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press).
  • 2Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865.
  • 3Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672.
  • 4Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502.
  • 5Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501.
  • 6Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901.
  • 7Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899.
  • 8Dillenschneider R 2008 Phys. Rev. B 78 224413.
  • 9SarandyMS 2009 Phys. Rev. A 80 022108.
  • 10Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部