期刊文献+

关于OI_n和DOI_n的理想的生成集及其秩 被引量:9

Systems of generators and ranks of ideals of OI_n and DOI_n
在线阅读 下载PDF
导出
摘要 设Xn={1,2,3,…,n}(n≥3)并赋予自然序,OIn为Xn上的一切保序严格部分一一变换半群,DOIn为Xn上的一切保序或保反序严格部分一一变换半群.分别记OIn,DOIn的理想为K(n,r)=α∈OIn:|imα|≤{r},KD(n,r)={α∈D OIn:|imα|≤r}.刻划了K(n,r)=<I>或KD(n,r)=<I>当且仅当与I相伴的有向图Γ(I)是强连通的.同时证明了rank(K(n,r))=Crn和rank(KD(n,r))=Crn,其中0≤r≤n-1. Let Xn = { 1,2,3,..., n }( n ≥ 3) ordered in the standard way, OIn be the semigroup of all order-preserving the strict partial one-to-one transformations on the set Xn and DOIn be the semigroup of all order-preserving or order-reversing the strict partial one-to-one transformations on the set Xn. DenotedK(n,r) = {a ∈ OIn: | ima| ≤ r}be ideals of OIn and KD(n,r) = {a ∈ DOIa: | ima| ≤ r} be ideals ofDOIn . In this paper , we characterize the K(n,r) = 〈 I 〉 or KD(n,r) = 〈 I 〉 if and only if the directed digraph F(I) is strongly connected. At the same time, it is show that rank (K(n,r)) =Crandrank(KD(n,r)) = C n r ,where 0 ≤r ≤ n-1.
出处 《贵州师范大学学报(自然科学版)》 CAS 2012年第2期54-58,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州省科技基金资助(黔科合J字LKS(2009)02号)
关键词 对称逆半群 子半群 保序变换 保反序变换 理想 极小生成集 symmetric inverse semigroup subsemigroup order-preserving transformation order-reversing transformation ideals minimal generating set rank
  • 相关文献

参考文献7

二级参考文献62

  • 1李映辉,王守峰,张荣华.含正则*-断面的正则半群(英文)[J].西南师范大学学报(自然科学版),2006,31(5):52-56. 被引量:10
  • 2徐波.自由幺半群的一族极大自由幺子半群[J].贵州师范大学学报(自然科学版),2007,25(2):68-70. 被引量:4
  • 3Schein B M. Research problems[J]. Semigroup Forum, 1970.1: 91-92.
  • 4Reilly N R. Maximal inverse subsemigroups of Tx[J]. Semigroup Forum,1978,15:319-326.
  • 5Levi I, Wood G R. On maximal subsemigroups of Bear Levi semigroups[J]. Semigroup Forum, 1984,30:99-102.
  • 6Hotzel E. Maximal properties some semigroups of Bear Levi semigroups[J]. Semigroup Forum, 1995,51:153- 193.
  • 7Todorov K, Kracolova L. On the maximal subsemigroup of the ideals of finite symmetric semigroup[J]. Simon Stevln, 1985,59(2): 129-140.
  • 8Yang Xiuliang. A classification of maximal inverse subsemigroups of finite symmetric inverse semigroups[J]. Communication in algebra, 1999.27 (8): 4089-4096.
  • 9You Taijie. Maximal regular subsemigroups of certain semigroupsof transformations[J]. Semigroup Forum,2002, 64(3):391-396.
  • 10Xu Bo. On maxmial inverse subsemigroups of certain semigroups of order-preversing partial one-one transformation[J]. Journal of Guizhou Normal University(Natural Science),2007,26(1):72-73.

共引文献74

同被引文献51

  • 1裴惠生,邹定宇,李连兵.降序且保序的有限全变换半群(英文)[J].信阳师范学院学报(自然科学版),2006,19(4):373-377. 被引量:5
  • 2Umar A. On the semigroups of order-decreasing finite full transformations[J].Proc Royal Society of Fdin,1992.129-142.
  • 3Umar A. On the ranks of certain finite semigroups of order-decreasing transformations[J].Portugaliae Math,1996,(1):23-34.
  • 4Gomes G M S,Howie J M. On the ranks of certain semigroups of order-preserving transformations[J].{H}SEMIGROUP FORUM,1992,(1):272-282.
  • 5Garba G U. On the idempotent ranks of certain semigroups of order-preserving transformations[J].Portugaliae Math,1994,(2):185-204.
  • 6Howie J M. Idempotent generators in finite full transformation semigroup[J].Proc Royal Society of Edin,1978.317323.
  • 7Howie J M,McFadden R B. Idenpotent rank in finite full transformation semigroup[J].Proc Royal Society of Edin,1990.161-167.
  • 8Howie J M,Ru(s)kuc N,Higgins P M. On Relative ranks of full transformation semigroups[J].{H}COMMUNICATIONS IN ALGEBRA,1998,(3):733-748.
  • 9Fountain J B. A bundant semigroups[J].{H}PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY,1982,(3):103-129.
  • 10Howie J M. Fundamentals of Semigroup Theory[M].{H}Oxford:Oxford University Press,1995.

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部