期刊文献+

优化稀疏数据集提高协同过滤推荐系统质量的方法 被引量:17

Optimization of sparse data sets to improve quality of collaborative filtering systems
在线阅读 下载PDF
导出
摘要 协同过滤是目前个性化推荐系统中效果较好的一种推荐技术。由于用户和项目数量的急剧增加,使得反映用户喜好信息的评分矩阵非常稀疏,严重影响了协同过滤技术的推荐质量。针对这一问题提出了综合均值优化填充方法,该方法相比较于缺省值法和众数法,考虑到了用户评分尺度问题,同时也不存在众数法中的"多众数"和"无众数"问题。在同一数据集上,通过使用传统的基于用户的协同过滤算法进行验证,表明此方法可以有效提高推荐系统的推荐质量。 Currently,the collaborative filtering is one of the successful and better personalized recommendation technologies that have been applied to the personalized recommendation systems.As the number of users and items increase dramatically,the score matrix which reflects the users' preference information is very sparse.The sparse matrix seriously affects the recommendation quality of collaborative filtering.To solve this problem,this paper presented a comprehensive mean optimal filling method.Compared to the default method and the mode method,this method has two advantages.First,the method takes account of user rating scale issues.Second,the method does not have the "multiple mode" and the "no mode" problems.On the same data set,using traditional user-based collaborative filtering to test the effectiveness of the method,and the results prove that the new method can improve the recommendation quality of recommendation systems.
出处 《计算机应用》 CSCD 北大核心 2012年第4期1082-1085,共4页 journal of Computer Applications
基金 海南慧人公司项目(HNHR2011-1)
关键词 推荐系统 协同过滤 均值 众数 信息过载 recommendation system collaborative filtering mean value mode information overload
  • 相关文献

参考文献14

  • 1BORCHERS A,HERLOCKER J,KONSTAN J,et al.Ganging upon information overload[J].Computer,1998,31(4):106-108.
  • 2SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collab-orative filtering recommendation algorithms[C]//Proceedings of the10th International Conference on World Wide Web.New York:ACM Press,2001:285-295.
  • 3SCHAFER J B,KONSTAN J A,RIEDL J.Recommender systemsin e-commerce[C]//Proceedings of the 1st ACM Conference on E-lectronic Commerce.New York:ACM Press,1999:158-166.
  • 4SCHAFER J B,KONSTAN J A,RIEDL J.E-commerce recommen-dation applications[J].Data Mining and Knowledge Discovery,2001,5(1/2):115-153.
  • 5VARIAN R.Recommender systems[J].Communications of theACM,1997,40(3):56-58.
  • 6LEE K C,KWON S.Online shopping recommendation mechanismand its influence on consumer decisions and behaviors:A causalmap approach[J].Expert Systems with Applications:An Interna-tional Journal,2008,35(4):1567-1574.
  • 7SHARDANAND U.Social information filtering for music recommen-dation TP-94-04[R].Cambridge:MIT Media Laboratory,1994.
  • 8SHARDANAND U,MAES P.Social information filtering:Algorithmsfor automating“word of mouth”[C]//Proceedings of the 1995 ACMSIGCHI Conference on Human Factors in Computing Systems.NewYork:ACM Press,1995:210-217.
  • 9MALTZ D,EHRLICH K.Pointing the way:active collaborative fil-tering[C]//Proceedings of the SIGCHI Conference on Human Fac-tors in Computing Systems.New York:ACM Press,1995:202-209.
  • 10ADOMAVICIUS G,TUZHILIN A.Toward the next generation ofrecommender systems:A survey of the state-of-the-art and possibleextensions[J].IEEE Transactions on Knowledge and Data Engineer-ing,2005,17(6):734-749.

同被引文献187

引证文献17

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部