期刊文献+

高效Ni^(2+)吸附菌株分离鉴定及特性研究 被引量:2

Isolation,identification and characterization of an efficient nickel-accumulating strain
在线阅读 下载PDF
导出
摘要 采用浓度梯度筛选的方法,从活性污泥中筛选到一株能耐受并吸附Ni 2+的菌株,命名为Ni-1.采用单因素法对菌株Ni-1的最适培养条件进行了考察,确定培养条件为t=30℃,pH=7.0,1.0%的NaCl.考察了菌株Ni-1对Cu2+和Ni 2+的吸附性能,并用表面响应法优化了吸附条件.菌株Ni-1吸附Cu2+的最优条件为Cu2+100mg/L、投加菌量(湿重)0.85g、溶液pH=6.0,在此条件下对Cu2+的最大吸附率为87.13%.菌株Ni-1吸附Ni 2+的最优条件为Ni 2+50mg/L、投加菌量(湿重)0.85g、溶液pH=6.0,在此条件下对Ni 2+的最大吸附率为84.32%.实验结果表明该细菌对较低浓度的Cu2+和Ni 2+有较好的吸附性能. A strain capable of tolerating and adsorbing nickel,which was named Ni-1,was isolated from activated sludge by concentration gradient screening technique.According to the single-factor experiments,the optimum growth conditions are obtained as follows:temperature 30 ℃,pH=7.0,sodium chloride concentration 1.0%.Subsequently,the adsorption capability of strain Ni-1 for Cu^2+ and Ni^2+ was investigated,and the absorption conditions were optimized using response surface methodology(RSM).The optimal conditions for Cu^2+ absorption by strain Ni-1 are as follows: 100 mg/L Cu^2+,0.85 g strain Ni-1(wet weight),and pH=6.0.Under the optimized conditions,the absorption rate of Cu^2+ can achieve 87.13%.The optimal conditions for Ni^2+ absorption by strain Ni-1 are as follows:50 mg/L Ni^2+,0.85 g strain Ni-1(wet weight),and pH=6.0.Under the optimized conditions,the absorption rate of Ni^2+ can achieve 84.32%.Experimental results indicate that strain Ni-1 has good adsorption capacity for Cu^2+ and Ni^2+ at low concentrations.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2012年第2期167-174,共8页 Journal of Dalian University of Technology
基金 城市水资源与水环境国家重点实验室开放基金资助项目(QA200811)
关键词 耐镍菌株 生物吸附 重金属离子 表面响应法 nickel-tolerant strains biosorption heavy metal ions response surface methodology
  • 相关文献

参考文献11

  • 1GADD G M. Heavy metal accumulation by bacteria and other microorganisms [J]. Cellular and Molecular Life Sciences, 1990, 46(8):834-840.
  • 2KAPOOR A, VIRARAGHAVAN T. Fungal biosorption- An alternative treatment option for heavy metal bearing wastewaters., a review [J]. Bioresource Technology, 1995, 53(3) : 195-206.
  • 3HOLAN Z R, VOLESKY B. Biosorption of lead and nickel by biomass of marine algae [J]. Biotechnology and Bioengineering, 1994, 43(11) :1001-1009.
  • 4HOLAN Z R, VOLESKY B, PRASETYO I. Biosorption of cadmium by biomass of marine algae [J]. Biotechnology and Bioengineering, 1993, 41(8): 819-825.
  • 5KRATOCHVIL D, VOLESKY B. Advances in the biosorption of heavy metals [ J ]. Trends in Biotechnology, 1998, 16(7) :291-300.
  • 6吴涓,李清彪,邓旭,卢英华.重金属生物吸附的研究进展[J].离子交换与吸附,1998,14(2):180-187. 被引量:85
  • 7GUIBAL E, ROULPH C, CLOIREC P L. Uranium biosorption by a filamentous fungus Mucor miehei pH effect on mechanisms and performances of uptake [J]. Water Research, 1992, 26(8) : 1139-1145.
  • 8TESZOS M, VOLESKY B. The mechanism of uranium biosorption by Rhizopu arrhizus [J ]. Bioteehnology and Bioengineering, 1982, 24 (2) : 385- 401.
  • 9PODDA F, ZUDDAS P, MINACCI A, et al. Heavy metal coprecipitation with hydrozincite [Zns(CO3)2(OH)6] from mine waters caused by photosynthetic microorganisms [J]. Applied and Environmental Microbiology, 2000, 66 ( 11 ) : 5092- 5098.
  • 10SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution, 1987, 4(4) :406-425.

二级参考文献16

共引文献84

同被引文献41

  • 1牛慧,许学书,王建华.非生长产黄青霉吸附铅的研究[J].微生物学报,1993,33(6):459-463. 被引量:14
  • 2杨国义,张天彬,万洪富,罗薇,高原雪.广东省典型区域农业土壤中重金属污染空间差异及原因分析[J].土壤,2007,39(3):387-392. 被引量:51
  • 3John Pete AL, Viraraghavan T. Removal of thallium from aqueous solutions by modified Aspergillus niger biomass [J]. Bioresour Technol, 2008, 99: 618-625.
  • 4Zitko V. Toxicity and pollution potential of thallium [J]. Sci Total Environ, 1975, 4: 82-92.
  • 5Xiao TF, Jayanta G, Dan B. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China [J]. Sci Total Environ, 2004, 31 (8): 223-244.
  • 6Robson A, Simone P, Lorraine W, Lee MK, Flavio AO, Camargo BC. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil [J]. Sci Total Environ, 2010, 40 (8): 1501-1507.
  • 7Jinho J, Sedky HA, Hassan S. Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus [J]. Int Biodeterior Biodegrad, 2010, 64: 734-741.
  • 8Li HF, Lin YB, Guan WM. Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX72-14 [J]. J Hazard Mater, 2010, 179: 151-159.
  • 9Yekta G, Sibel U, Ulgar G. Biosorption of cadmium and lead ions by ethanol treated bakers yeast biomass [J]. Bioresour Technol, 2005, 96: 103-109.
  • 10Lester JN. Role of bacterial extracellular polymers in metal uptake in pure bacterial culture and activated sludge [J]. Water Res, 1982, 16: 1539-1548.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部