期刊文献+

共享存储MapReduce云计算性能测试方法 被引量:3

Performance Test Method for Shared Memory MapReduce Cloud Computing
在线阅读 下载PDF
导出
摘要 为优化大量云计算线程对共享存储的访问,提出一种共享存储MapReduce云计算性能测试方法。以Oprofile为中心,对云计算的应用逻辑、动态共享库及内核系统调用进行性能统计分析,通过Valgrind与Ptrace机制完成对存储访问及系统调用的计数与计时。实验结果表明,该方法可快速定量分析共享存储的MapReduce,发现应用的内在性能瓶颈。 In order to tune performance of thread-based cloud computing in shared memory, this paper proposes a performance test method for shared memory MapReduce cloud computing. Based on Oprofile, it collects the performance data from application logic dynamic shared library and the kernel system call. Valgrind and Ptrace are used to evaluate memory system and monitor the system calls invoked by application. Experimental results show that the proposed method can analyze the application performance form different levels, and find performance bottleneck in the application.
出处 《计算机工程》 CAS CSCD 2012年第6期50-52,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2009AA01Z108) 上海市教委科研创新基金资助项目(11YZ158) 上海海洋大学博士基金资助项目(A-3604-07-000401)
关键词 云计算 共享存储 性能测试 系统调用 动态共享库 cloud computing shared memory performance test system call dynamic shared library
  • 相关文献

参考文献8

  • 1Jeffrey D, Sanjay Ct MapReduce: Simplified Data Processing on Large Clusters[J]. Communications of the ACM, 2008, 51(1): 107-113.
  • 2Richard M Y, Romano A, Christos K. Phoenix Rebirth: Scalable MapReduce on a Large-scale Shared-memory System[C]//Proc. of IISWC'09. [S. 1.]: IEEE Press, 2009.
  • 3Rafique M M, Benjamin R. CellMR: A Framework,for Supporting Mapreduce on Asymmetric Cell-based Clusters[C]//Proc. of IPDPS'09. Rome, Italy: [s. n.], 2009.
  • 4Fang Wenbin, He Bingsheng, Luo Qiong, et al. Mars: Accelerating MapReduce with Graphics Processors[J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(4): 608-620.
  • 5Shan Yi, Wang Bo, Yan Jing, et al. FPMR: MapReduce Framework on FPGA[EB/OL]. (2010-11-21). http://www.arnetminer.org/ viewpub.do?pid= 1322472.
  • 6Jiang Dawei, Ooi B C, Shi Lei, et al. The Performance of MapReduce: An In-depth Study[EB/OL]. (2010-11-21). http:// dl.acm.org/citation.cfm?id= 1920903.
  • 7Menon A, Santos J R. Diagnosing Performance Overheads in the Xen Virtual Machine Environment[C]//Proc. of the 1st ACM/USENIX International Conference on Virtual Execution Environments. New York. USA: [s. n.]. 2005.
  • 8葛君伟,张博,方义秋.云计算环境下的资源监测模型研究[J].计算机工程,2011,37(11):31-33. 被引量:26

二级参考文献7

  • 1Garry S,Mark B.A Flexible Monitoring and Notification System for Distributed Resources[C] //Pros.of the 7th International Symposium on Parallel and Distributed Computing.Krakow,Poland:[s.n.] ,2008.
  • 2Liu Yi,Gao Shu.WSRF-based Distributed Visualization[C] //Proc.of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid.Shanghai,China:[s.n.] ,2009.
  • 3Figueiredo R.Adaptive Predictor Integration for System Performance Prediction[C] //Pros.of IEEE International Parallel and Distributed Processing Symposium.[S.l.] :IEEE Press,2007.
  • 4Diaz I,Fernandez G,Martinm M.Integrating the Common Information Model with MDS4[C] //Pros.of the 9th IEEE/ACM International Conference on Grid Computing.Tsukuba,Japan:[s.n.] ,2008.
  • 5Nurmi D,Wolski R,Grzegorczyk C.The Eucalyptus Open Source Cloud Computing System[C] //Proc.of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid.Shanghai,China:[s.n.] ,2009.
  • 6方磊,黄韬,舒坚,刘琳岚,陈宇斌.事件驱动型无线传感器网络能量监测机制研究[J].传感器与微系统,2008,27(10):14-17. 被引量:4
  • 7郭本俊,王鹏,陈高云,黄健.基于MPI的云计算模型[J].计算机工程,2009,35(24):84-86. 被引量:38

共引文献25

同被引文献18

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部