期刊文献+

基于context模型的contourlet域图像去噪 被引量:5

Image Denosing Based on Context Model in Contourlet Domain
在线阅读 下载PDF
导出
摘要 在分析contourlet域系数分布特征的基础上提出了一种基于context模型的contourlet域图像去噪算法。算法的关键点在于:基于contourlet变换系数的分布特性,确定合适的去噪门限;利用context模型建立图像contourlet变换后的系数分类模型并根据分类使用不同的门限去噪。实验表明,本方法能较好地去除图像噪声,在提高去噪图像PSNR值和改善主观视觉效果方面都表现出了良好的性能。 This paper presented an image denoising algorithm based on context model by analyzing distribution features of contourlets coefficients. The key of the proposed arithmetic is that through the analysis of CT coefficients distribution characteristics, we chose the appropriate denoising thresholding, adopted the context model to construct CT coefficient's classification model, and according to different classification, image noise was removed by using different threshold. The experimental results show that the proposed algorithm can effectively remove the noise in images. The algorithm also demonstrates good performance in enhancing image PSNR and improves the image subjective visual impression.
出处 《计算机科学》 CSCD 北大核心 2012年第3期243-245,共3页 Computer Science
基金 国家自然科学基金(60976020)资助
关键词 CONTOURLET变换 图像去噪 context模型 Contourlet transform, Image denoising, Context model
  • 相关文献

参考文献15

  • 1Do M N, Vetterli M. Contourlets: a directional multiresolution image representation [C] //Image Processing. 2002. Proceedings. 2002 International Conference. 2002.
  • 2郭旭静,王祖林.基于尺度间相关的非下采样Contourlet图像降噪算法[J].光电子.激光,2007,18(9):1116-1119. 被引量:17
  • 3戴维,于盛林,孙栓.基于Contourlet变换自适应阈值的图像去噪算法[J].电子学报,2007,35(10):1939-1943. 被引量:52
  • 4Do M N, Vetterli NL Contourlets: A directional multiresolution image representation[C]//Citeseer. 2002.
  • 5Burt P, Adelson E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31 (4): 532-540.
  • 6Do M N. Directional multiresolution image representations[M]. Citeseer, 2001.
  • 7Chang S G,Yu B,Vetterli M. SPatially adaptive wavelet thresholding with eontext modeling for image denoising[J]. IEEE Transaetions on Image Proeessing, 2000,9(9) : 1522-1531.
  • 8Mallat S G. A theory for multiresolution signal decomposition; The wavelet representation [J]. Pattern IEEE Transactions on Analysis and Machine Intelligence, 1989,11(7):674-693.
  • 9Westerink P H, Biemond J, Boekee D E. An optimal bit allocation algorithm for sub-band coding[C]//IEEE. 1988.
  • 10Chang S G, Yu B, Vetterli M. Image denoising via lossy compression and wavelet thresholding[J]. IEEE Trans. Image Processing, 2000,9 : 1532-1546.

二级参考文献23

  • 1王文波,羿旭明,费浦生.基于曲波系数相关性的去噪算法[J].光电子.激光,2006,17(12):1519-1523. 被引量:11
  • 2Jean-Luc Starck, Emmanuel J Candes, David L Donoho. The curvelet transform for image denoising[J]. IEEE Trans on Image Processing, 2002,11(6) : 670-684.
  • 3Minh N Do,Martin Vetterli. The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE Trons on Image Processing,2005,14(12): 2091-2106.
  • 4Cohen A,Matei B. Compact representation of images by edge adapted multiscale transforrns[A]. IEEE Int Conf on Image Proc , Special Session on Image Processing end Non-Linear Approximation Thessaloniki[C]. 2001, 1: 8-11.
  • 5Donoho D L. Wedgelets: nearly-minimax estimation of edges[J]. Ann Statist, 1999,27: 859-897.
  • 6Wakin M B,Rombeg J K,Ohoi H,et el. Rate-distortion optimized image compression using wedgelets[A]. IEEE Int Conf on Image Proc Thessaloniki[C]. 2002,3:237-240.
  • 7Dragotti P L,Vetterli M. Footprints and edgeprints for image denoising and compression[A]. IEEE Int Conf on Image Proc[C]. 2001,237- 240.
  • 8Zhou J,Cunha A L, Do M N. Nonsubsampled contourlet transform:construction and application in enhancement[A]. IEEE International Conferenoe on Image Processing[C]. 2005,1:469-472.
  • 9Cunha A L,Zhou J,Do M N. Nonsubsampled contourilet transform:filter design and applications iin denoising[A]. IEEE International Confer enoe on Image Process ing [ C]. 2005,1:749-752.
  • 10Sun T,Neuvo Y. Detail-preserving median based filters in image processing[J]. Pattern Recongnition Letters, 1994,15(4):341-347.

共引文献83

同被引文献38

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部