期刊文献+

面向系统吞吐率最大化的P2P自适应覆盖网络

Adaptive Peer-to-Peer Overlay for the Maximum Throughput
在线阅读 下载PDF
导出
摘要 P2P系统的本质任务在于提高资源利用率和系统吞吐量,满足更多用户的数据请求。在无结构P2P中,通常分配高权重节点以较多连接,使之收到并命中更多查询,以提高搜索成功率。但高搜索成功率本身却未必能够提高系统吞吐量,因为受带宽因素影响,高权重节点的负载较重,造成服务可用性降低。提出了一种覆盖网络优化方案,即根据带宽负载和存储权重自适应性调整节点连接度,优化覆盖网络结构,提高系统吞吐量。模拟实验数据表明,基于带宽和搜索成功率的覆盖网络优化方案可以以很小代价提高系统吞吐量,当文件体积较小时提高比例可高达22%。 The intrinsic value of P2P system is to improve the utility ratio of system resources and the system throughput, as well as to satisfy more data requests. In many unstructured P2P systems, the peers with high popularity weight in the overlay are assigned with more connections, so as to receive more messages and hit more requests and finally to improve the search success rate. Due to the lack consideration of bandwidth, the peers with high weight are apt to be o- verloaded and the available services decrease. Therdore, the high success rate alone doesn't mean the high throughput and service availability. An optimization solution of overlay network was proposed in this paper to improve the throughput and the number of access customers, in which the connections are adaptively adjusted according to the available bandwidth and the popularity weight. Our simulations show that our method can improve the system throughput as high as 22% with low cost.
出处 《计算机科学》 CSCD 北大核心 2012年第3期43-46,82,共5页 Computer Science
基金 国家自然科学基金(60803111 61073028) 江苏省自然科学基金(BK2009396 BK2009100 10KJB520008)资助
关键词 无结构P2P 覆盖网络 系统吞吐量 搜索成功率 可用带宽 Unstructured P2P, Overlay network, Throughput, Success rate, Available bandwidth
  • 相关文献

参考文献12

  • 1Mitola J m. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio[D]. Sweden: Royal Institute of Technology (KTH),May 2000.
  • 2FCC Report and Order, Facilitating Opportunities for Flexible, Efficient,and, Reliable Spectrum Use Employing Cognitive Radio Teehnologies[R]. FCC-05-57A1. USA: FCC, 2005.
  • 3Wang Bei-bei, Zhu Ji, Liu K J R. Primary-prioritized Markov Approach for Dynamic Spectrum Access, New Frontiers in Dynamic Spectrum Access Networks [C]// DySPAN 2007. 2nd IEEE International Symposium. April 2007:507-515.
  • 4Hong C P T, Lee Y,Koo I. Spectrum sharing with buffering in cognitive radio networks[C]//2010 Asian Conference on Intelligent Information and Database Systems. Mar. 2010:261-270.
  • 5Ahmed W, Gao J, Faulkner M. Channel allocation for fairness in opportunistic spectrum access networks[C]// 2010 IEEE Wireless Communications and Networking Conference. Apr. 2010.
  • 6Ahmed W, Gao J, Zhou Hong, et al. Throughput and proportional fairness in cognitive radio networks[C] //2009 International Conference on Advanced Technologies for Communications. Oct. 2009 : 248-252.
  • 7Hu Han, Zhu Qi. Dynamic spectrum access in underlay cognitive radio system with SINR constraints [C] //2009 International Conference on Wireless Communications, Networking and Mobile Computing. Sep. 2009.
  • 8Bansal G, Hossain J, Bhargava V K. Adaptive power loading for OFDM-based cognitive radio systems[C]// Proe. IEEE International Communication eonference. Glasgow, Scotland, June 2007;5137-5142.
  • 9Wang P, Zhong X, Xiao L, et al. A general power allocation algorithm in OFDM-based cognitive radio systems[C]//Proc IEEE ICC 2009. Dresden, Germany, 2009 : 1-5.
  • 10Zhang Lan, Xin Yan, Liang Ying-ehang. Optimal power allocation for multiple access ehannels in cognitive radio networks[C]// VTC Spring,2008. 2008:1549-1553.

二级参考文献7

  • 1Mitola J, Maguire G. Cognitive radio: making software radios more personal[J]. IEEE Pets Commun, 1999, 6 (4): 13-18.
  • 2Xing Y, Mathur C N, Haleem M A. Dynamic spectrum access with QoS and interference temperature constraints [J]. IEEE Transactions on Mobile Computing, 2007, 6 (4) : 16-20.
  • 3Huang J, Berry R, Honig M L. Auction based spectrum sharing[J]. ACM Journal, 2006, 11(3): 405-418.
  • 4Nie N, Comaniciu C. Adaptive channel allocation spectrum etiquette for cognitive radio networks[J]. Mobile Networks and Applications, 2006, 11(6): 779-797.
  • 5FCC. ET Docket 03-237--2003, Notice of inquiry and notice of proposed rule making[S]. 2003.
  • 6Boyd S, Vandenberghe L. Convex optimization [ M]. Cambridge: Cambridge University Press, 2004.
  • 7Bertsekas D P. Nonlinear programming[M]. Nashua: Athena Scientific, 1999.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部