期刊文献+

一种改进的SVM决策树及在遥感分类中的应用 被引量:8

Improved SVM decision-tree and its application in remote sensing classification
在线阅读 下载PDF
导出
摘要 针对遥感图像分类问题提出了一种基于遗传算法和K近邻的SVM决策树方法。算法以基于类分布的类间分离性测度为准则,利用遗传算法对传统的SVM决策树进行优化,生成最优(较优)决策树。在分类阶段,对容易分的节点利用SVM进行分类,而对可分离性差的节点采用SVM和K近邻相结合的分类方法,最终实现多类别分类。实验结果表明,与传统的分类方法相比,该算法的实验效果较好,可有效地提高遥感图像的分类精度。 This paper presented a SVM decision-tree algorithm based on GA and KNN. First, GA was used to create optimal or near-optimal decision-tree, which defined a novel separability measure. Then in the class phase, standard SVM was used to make binary classification for the divisible nodes, and SVM combined with KNN were used to classify the fallible nodes. Finally, achieved the multi-classification by the SVM decision-tree. Experimental results show that the proposed method can effectively improve the classification precision of remote sensing image in comparison to traditional classification methods.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期1146-1148,1151,共4页 Application Research of Computers
基金 辽宁省科技计划资助项目(2010401010)
关键词 遗传算法 K近邻 支持向量机决策树 遥感图像分类 genetic algorithm K-nearest neighbors support vector machine ( SVM ) decision-tree classification of remote sensing image
  • 相关文献

参考文献9

  • 1惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,28(2):93-95. 被引量:46
  • 2元昌安.数据挖掘原理与SPSS Clementine应用[M].北京:电子工业出版社,2009.
  • 3张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2311
  • 4LNOUE T, ABE S. Fuzzy support vector machines for pattern classifi- cation[ C ]//Proc of International Joint Conference on Neural Net- works. 2001 : 1449-1454.
  • 5KRESSEL U. Pairwise classification and support vector machines [ M]//Advances in Kernel Methods:Support Vector Learning. Cam- bridge:MIT Press,1999 : 255-258.
  • 6YAN Zhi-gang. Research on ECOC SVMs[ C ]//Proc of World Congress on Intelligent Control and Automation (WCICA). 2010:2838-2842.
  • 7PLATT J C, CRISTIANINI N, SHAWE T J. Large margin DAGs for multiclass classification [ C ]//Proc of Neural Information Processing Systems. Cambridge : MIT Press, 2000 : 547-553.
  • 8ARUN K M, GOPAL M. Fast multiclass SVM classification using deci- sion tree based one-against-all method [ J ]. Neural Processing Let- ters,2010,32(3) :311-323.
  • 9TAKAHASH F, ABE S. Decision-tree-based muhi-class support vector machines [ C ]//Proc of ICONIP' 02. [ S. l.] : IEEE Press, 2002: 1419-1422.

二级参考文献7

共引文献2354

同被引文献96

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部