期刊文献+

基于Fourier神经网络的图像复原算法 被引量:2

Image restoration algorithm based on Fourier neural network
在线阅读 下载PDF
导出
摘要 由于退化图像的点扩散函数难以准确确定,提出一种基于Fourier正交基函数的前向神经网络图像复原模型,该模型以一组Fourier正交基为隐层神经元的激励函数,根据误差传递算法进行权值修正,达到收敛目标。给出Fourier神经网络及其相应的衍生算法的图像恢复实现步骤。实验表明,该方法能较好地实现图像的复原。 According to the fact that PSF ( point spread function) of the degraded image can' t obtain accurately, this paper constructed a feed-forward neural network for image restoration based on the Fourier orthogonal function. The hidden-layer neurons were activated by a series of Fourier orthogonal functions, updated its weight by the error back-propagation training algorithm and finally reached convergence target. This paper applied the Fourier neural network and its hidden-neuron growing algorithm to recover the fuzzy image. Experiments show they have better performances on image restoration.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期1143-1145,共3页 Application Research of Computers
基金 山西省自然科学基金资助项目(2008011030) 山西省回国留学人员科研资助项目(2011-075) 太原市大学生创新创业专项项目(2010 2011) 太原科技大学校UIT项目(XJ2010040)
关键词 图像复原 傅里叶正交基函数 傅里叶神经网络 衍生算法 image restoration Fourier orthogonal function Fourier neural network hidden-neuron growing algorithm
  • 相关文献

参考文献8

  • 1WU Y D, SUN Y,ZHANG H Y,et al. Variational PDE based image restorad,m using neural network [ J]. lET Image Processing,2007, 1 (1) :85-93.
  • 2GAN X,LIEW A W C, YAN H. A POCS-based constrained total least squares algorithm for image restoration[ J ]. Journal of Visual Com-munication and Image Representation, 2006,17(5 ):986-1003.
  • 3吴小俊,王士同,杨静宇,曹奇英.基于正交多项式函数的神经网络及其性质研究[J].计算机工程与应用,2002,38(9):25-26. 被引量:16
  • 4张雨浓,旷章辉,肖秀春,陈柏桃.Fourier三角基神经元网络的权值直接确定法[J].计算机工程与科学,2009,31(5):112-115. 被引量:7
  • 5HALAWA K. Determining the weights of a Fourier series neural uet- work on the basis of tile multidimensional discrete Fourier transform [J]. International Journal of Applied Mathematics and Comput- er Science,2008,18(3 ) :369-375.
  • 6ZUO Wei, ZHU Yang, CAI Li-long. Fourier-neural-network-based learning control lot a class of nonlinear systems with flexible compo- nents[ J ]. IEEE Trans on Neural Networks, 2009,20 ( 1 ) : 139- 151.
  • 7TAN Hs. Fourier neural networks and generalized single hidden layer netwurks in aireraft engine fault diagnustics [ J ]. Journal of Engi- neering for Gas Turbines and Power, 2006,128 (4) :773-782.
  • 8张雨浓,曾庆淡,肖秀春,姜孝华,邹阿金.复指数Fourier神经元网络隐神经元衍生算法[J].计算机应用,2008,28(10):2503-2506. 被引量:9

二级参考文献35

  • 1周宏志,王伊卿,樊长虹.基于神经网络的移动机器人路径规划[J].计算机工程与科学,2005,27(12):72-75. 被引量:1
  • 2章兢,邹阿金,童调生.多项式基函数神经网络模型[J].湖南大学学报(自然科学版),1996,23(2):84-89. 被引量:21
  • 3王淑玲,李振涛,邢棉.一种优化神经网络结构的遗传禁忌算法[J].计算机应用,2007,27(6):1426-1429. 被引量:10
  • 4孙增圻.智能控制理论与应用[M].北京:清华大学出版社,1997.169-177.
  • 5邓东皋,尹小玲.数学分析简明教程[M].北京:高等教育出版社,2005.
  • 6Zhang Y N, Wang J. Recurrent Neural Networks for Nonlinear Output Regulation[J]. Automatica, 2001, 37 (8) : 1161-1173.
  • 7Zhang Y N, Ge S S, Lee T H. A Unified Quadratic Programrning Based Dynamical System Approach to Joint Torque Optimization of Physically Constrained Redundant Manipulators[J]. IEEE Trans on Systems, Man and Cybernetics, 2004, 34(5) :2126-2132.
  • 8Zhang Y N, Jiang D C, Wang J. A Recurrent Neural Network for Solving Sylvester Equation with Time-Varying Coefficients[J]. IEEE Trans on Neural Networks, 2002, 13 (5) : 1053-1063.
  • 9Zhang Y N, Ge S S. Design and Analysis of a General Recurrent Neural Network Model for Time-Varying Matrix Inversion[J]. IEEE Trans on Neural Networks, 2005, 16 (6): 1477-1490.
  • 10Rumelhart D, McClelland E. Parallel Distributed Processing: Explorations in the Microstructure of Cognition [M]. Cambridge: MIT Press, 1986.

共引文献26

同被引文献20

  • 1韩玉兵,吴乐南.基于状态连续变化的Hopfield神经网络的图像复原[J].信号处理,2004,20(5):431-435. 被引量:13
  • 2闫华,魏平,肖先赐.基于Bernstein多项式的自适应混沌时间序列预测算法[J].物理学报,2007,56(9):5111-5118. 被引量:18
  • 3CHAN Hsiao-Lung, WANG Chun-Li, FANG Shih-Chin, et al. Recognition of Ventricular Extrasystoles Over the Reconstructed Phase Space of Electrocardiogram [J]. Annals of Biomedical Engineering ($1573-9686), 2010, 38(3): 813-823.
  • 4Tongal H, Bemgtsson R. Phase-space Reconstruction and Self-exciting Threshold Modeling Approach to Forecast Lake Water Levels [J]. Stochastic Environmental Research and Risk Assessment (S1436-3259), 2014, 28(4): 955-971.
  • 5Sun Y, Zhou D, Rangan A V, et al. Pseudo-Lyapunov Exponents and Predictability of Hodgkin-Huxley Neuronal Network Dynamics [J]. Journal of Computational Neuroscience (S1573-6873), 2010, 28(2): 247-266.
  • 6Wu Zongmin, Sun Xingping, Ma Limin. Sampling Scattered Data with Bernstein Polynomials: Stochastic and Deterministic Error Estimates [J]. Advances in Computational Mathematics (S1572-9044), 2013, 38(1): 187-205.
  • 7Lee S H, Chung K Y, Lim J S, et al. Detection of Ventricular Fibrillation Using Hilbert Transforms, Phase-space Reconstruction, and Time-domain Analysis [J]. Personal and Ubiquitous Computing (S1617-4917), 2014, 18(6): 1315-1324.
  • 8Zhong Yubin, Xiang Yi, Jiang Yuanbin, et al. A Hybrid Dynamic Multi-swarm PSO Algorithm with Nelder-mead Simplex Search Method [J]. Journal of Computational Information Systems (S1553-9105), 2013, 9(19): 7741-7748.
  • 9Kumar S, Chaturvedi D K. Optimal Power Flow Solution Using GA-Fuzzy and PSO-Fuzzy [J]. Journal of the Institution of Engineering (India): Series B (S2250-2114), 2014, 95(4): 363-368.
  • 10张淑清,贾健,高敏,韩叙.混沌时间序列重构相空间参数选取研究[J].物理学报,2010,59(3):1576-1582. 被引量:88

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部