期刊文献+

基于梯度基元聚合矢量的图像检索算法 被引量:2

Image retrieval based on gradient texton coherence vector
在线阅读 下载PDF
导出
摘要 针对图像检索中多特征融合问题,提出了一种基于梯度基元聚合矢量的图像检索算法。该算法在改进的HSV颜色空间计算边缘梯度,通过定义的基元模板扫描梯度图像,生成梯度基元图像,将基元和非基元像素分别组合成聚合和非聚合像素集合;最后利用颜色自相关图算法对上述两个集合提取特征矢量,实现了融合颜色、形状、纹理和空间信息等多特征的图像检索。实验结果表明,该算法能够融合颜色、形状、纹理和空间信息,有效地提高了基于内容的图像检索的查准率和查全率。 This paper proposed a new image retrieval algorithm based on gradient texton coherence vector for fusion of multi-features.The algorithm computed the edge gradient first in the modified HSV color space,and then gained gradient texton map by scanning the gradient image through the special texton types.The texton pixels were combined into the coherence set,the other pixels were the non-coherence set.At last,it represented the feature vector of the image retrieval by color auto-correlogram in two sets,and realized the image retrieval based multi-features which fused color,shape,texture and spatial information.Experimental results show that the proposed algorithm can combine color,texture,shape and spatial characteristic effectively,and have valid precision and recall.
出处 《计算机应用研究》 CSCD 北大核心 2012年第3期1119-1122,1122,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61075028)
关键词 梯度基元 改进的HSV颜色空间 颜色自相关图 图像检索 gradient texton modified HSV color space color auto-correlogram image retrieval
  • 相关文献

参考文献6

  • 1吴介,裘正定.底层内容特征的融合在图像检索中的研究进展[J].中国图象图形学报,2008,13(2):189-197. 被引量:13
  • 2VADIVEL A , SHAMILK S, MAJUMDAR A K. An integrated color and intensity co-occurrence matrix [ J ]. Pattern Recognition, 2007, 28(8) :974-983.
  • 3LIU Guarig-hai, ZHANG Lei, HOU Ying-kun, er al. Image retrieval based on multi-texton histogram[ J]. Pattern Recognition,2010,43 (7) :2380-2389.
  • 4RUI Min, CHENG H D. Effective image retrieval using dominant col- or descriptor and fuzzy support vector machine[ J]. Pattern Recogni- tion ,2009,42 ( 1 ) : 147-157.
  • 5LIU Guang-hai , LI Zuo-yong, ZHANG Lei, et al. Image retrieval based on micro-structure descriptor[ J ]. Pattern Recognition, 2011, 44(9) :2123-2133.
  • 6WANG J Z. Test database used in simplicity paper [ DB/OL ]. (2001-07 ). http ://wang. ist. psu. edu/docs/related.

二级参考文献57

共引文献12

同被引文献22

  • 1刘斐,卢惠民,郑志强.基于线性分类器的混合空间查找表颜色分类方法[J].中国图象图形学报,2008,13(1):104-108. 被引量:11
  • 2Rotaru C, Graf T, Zhang J W. Color image segmentation in HSI space for automotive applications[J]. Journal of Real-Time Image Processing, 2008,3 (4): 311-322.
  • 3Sen G G, Bailey D. Discrete YUV look-up tables for fast colour segmentation for robotic applications[C]. Canadi an Conference on Electrical and Computer Engineering, 2008:963-968.
  • 4Kang G, Beak J, Park J. Features defined by median filtering on RGB segments for image retrieval[C]. Second UK SIM European Symposium on Computer Modeling and Simu lation, 2008 : 436-440.
  • 5Ubong L J, Chee S T, Giap W N. A comparison of RGB and HSI color segmentation in real time video images: A preliminary study on road sign deteetion[C]. Information Technology, 2008: 1-6.
  • 6Richard S. Computer vision: algorithms and applications [M].Berlin:Springer,2010.
  • 7Lin C H, Chen R T, Chan Y K. A smart content-based image retrieval system based on color and texture feature[J]. Image and Vision Computing, 2009, 27(6): 658-665.
  • 8Mussarat Y, Muhammad S, Sajjad M, et al. Content based im- age retrieval using combined features of shape, color and rele- vance feedback[J]. KSII Transactions on Interact and Informa- tion Systems, 2013, 7(12): 3149-3165.
  • 9Johnson J L. Pulse-coupled neural nets: translation, rotation, scale, distortion and intensity signal invariance for images[J]. Applied Optics, 1994, 33(26): 6239-6253.
  • 10Oppenheim A V, Lim J S. The importance of phase in signals [J]. Proceedings of the IEEE, 1981, 69(5): 529-541.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部