期刊文献+

利用神经元拓展正则极端学习机预测时间序列 被引量:2

Time series prediction using neuron-expanding regularized extreme learning machine
原文传递
导出
摘要 为实现对于时间序列预测数据的准确预测,提出一种神经元拓展正则极端学习机(NERELM,Neuron-Expanding Regularized Extreme Learning Machine),并研究了其在时间序列预测中的应用.NERELM根据结构风险最小化原理权衡经验风险与结构风险,以逐次拓展隐层神经元的方式自动确定最佳的网络结构,以避免传统神经网络训练过程中需人为确定网络结构的弊端.应用于时间序列的仿真结果表明:NERELM可有效实现对于RELM最佳网络结构的自动确定,具有预测精度高与计算速度快的优点. A new algorithm called neuron-expanding regularized extreme learning machine(NERELM) was proposed and applied to time series prediction.In order to enhance the generalization performance of NERELM,the empirical risk and the structural risk were balanced on the basis of structural risk minimization theory.The output weights of NERELM were analytically determined at extremely fast learning speed instead of using gradient-based learning algorithm,and the optimal network structure of NERELM was automatically determined by expanding its hidden neuron nodes iteratively.Experiments on time series prediction indicate that NERELM has better performance in training computation cost and prediction accuracy in comparison with conventional gradient-based neural networks.
作者 张弦 王宏力
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第12期1510-1514,共5页 Journal of Beijing University of Aeronautics and Astronautics
关键词 神经网络 极端学习机 正则极端学习机 时间序列预测 neural networks extreme learning machine regularized extreme learning machine time series prediction
  • 相关文献

参考文献21

  • 1Song Q S, Feng Z R. The hybrid forecasting model based on chaotic mapping, genetic algorithm and support vector machine[ J ]. Expert Systems with Applications,2010,37 (2) : 1776-1783.
  • 2Jeng J T,Chuang C C,Tao C W. Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers [ J ]. Neurocomputing,2010,73 ( 10-12 ) : 1686-1693.
  • 3Su L Y. Prediction of multivariate chaotic time series with local polynomial fitting[J]. Computers & Mathematics with Applications,2010,59 (2) :737-744.
  • 4Lau K W, Wu Q H. Local prediction of non-linear time series using support vector regression [ J ]. Pattern Recognition, 2008, 41(5) :1539-1547.
  • 5Muhammad A F,Zolfagbari S. Chaotic time series prediction with residual analysis method using hybrid Elman NARX neural networks[ J ]. Neurocomputing,2010,73 ( 13-15 ) :2540-2553.
  • 6Song Q S, Feng Z R. Effects of connectivity structure of complex echn state network on its prediction performance for nonlinear time series [ J ]. Neurocomputing, 2010,73 ( 10-12 ) , 2177-2185.
  • 7Fu Y Y,Wu C J,leng J T,et M. ARFNNs with SVR for prediction of chaotic time series with outliers[ J]. Expert Systems with Applications,2010,37 ( 6 ) :4441-4451.
  • 8Lin C J, Chen C H, Lin C T. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications [ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews ,2008,39 ( 1 ) :55-68.
  • 9Huang G B,Zhu Q Y, Siew C K. Extreme learning machine :theory and applications [ J ]. Neurocomputing, 2006,70 ( 1-3 ) : 489 -501.
  • 10Feng G R,Huang G B,Lin Q P,et al. Error minimized extreme learning machine with growth of hidden nodes and incremental learning [ J ]. IEEE Transactions on Neural Networks, 2009, 20(8) :1352-1357.

二级参考文献17

  • 1Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
  • 2Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6) : 861-867.
  • 3Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
  • 4Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
  • 5Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 6Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer, 1995.
  • 7Rousseeuw P J, Leroy A. Robust Regression and Outlier Detection. New York: Wiley, 1987.
  • 8Rumelhart D E, McClelland J L. Parallel Distributed Processing. Cambridge.. MIT Press, 1986, 1(2): 125-187.
  • 9Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge: Cambridge University Press, 2000.
  • 10Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.

共引文献198

同被引文献30

  • 1周建强,李玉娜,屈卫东,兰增林.基于风速时空信息的BP神经网络超短期风速预测研究[J].电网与清洁能源,2015,31(1):109-112. 被引量:10
  • 2陈果.用结构自适应神经网络预测航空发动机性能趋势[J].航空学报,2007,28(3):535-539. 被引量:30
  • 3Vingerhoeds R A, J anssens P, Netten B D, et al. En- hancing Off-Line and On-Line Condition Monitoring and Fault Diagnosis [J]. Control Engineering Practice, 1995, 3 (11): 1515-1528.
  • 4Ding G, Zhong S S. Aircraft Engine Lubricating Oil Monitoring by Process Neural Network [J]. Neural Net- work World, 2006, 16(1): 15-24.
  • 5Huang G B, Zhu Q Y, Siew C K. Extreme Learning Ma- chine: Theory and Applications [J]. Neurocomputing, 2006, 70: 489-501.
  • 6Yu Q, Miche Y, Eirola E, et al. Regularized Extreme Learning Machine for Regression with Missing Data [J]. Neurocomputing, 2013, 102:45-51.
  • 7Shrivastava N A, Panigrahi B K. A Hybrid Wavelet- ELM Based Short Term Price Forecasting for Electricity Markets [J]. Electrical Power and Energy Systems, 2014, 55:41-50.
  • 8Huang G B, Ding X J, Zhou H M. Optimization Method Based Extreme Learning Machine for Classification [J]. Neurocomputing, 2010, 74: 155-163.
  • 9Huang G B, Zhnu H M, Ding X J, et al. Extreme Learn- ing Machine for Regression and Multiclass Classification [J]. IEEE Trans on Systems, Matt, and Cybernetics- part B: Cybernetics, 2012, 42( 2): 513-529.
  • 10Liang N Y, Huang G B, Saratehandran P, et al. A Fast and Accurate On-Line Sequential [,earning Algorithm for Feedforward Networks [J]. IEEE Trans on Neural Networks, 2006, 17(6): 1411-1423.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部