期刊文献+

预测型切比雪夫多项式 被引量:7

Predictive type of Chebyshev polynomials
在线阅读 下载PDF
导出
摘要 预测型切比雪夫多项式,是切比雪夫多项式及最佳逼近理论在预测中的一个推广应用,可以解决一般预测中预测的可知、可控性问题。文中通过讨论后指出,在预测中,当预测误差不超过已知最大绝对误差时,预测将成为可知;当预测区间不超过已知最大范围时,预测将成为可控。基于这个原理,建立了一种具有预测功能的预测型切比雪夫多项式,Gn(x)多项式。论证了该多项式依据的微分方程、相关定义、有关性质、数学表式;阐述了该多项式的存在性;给出了Gn(x)多项式在y(x)10条件下构成的预测型最佳逼近g(x)多项式;提供了g(x)多项式得以实现的具体算法;介绍了一种使预测结果更接近实际值的误差补偿法;并给出了若干应用实例。 Predictive type of Chebyshev polynomials are an extension of the Chebyshev polynomials and the best approximation theory, it can solve the general forecast predicted the knowability and controllability problems. Through discussions in the article pointed out, when the prediction error of not more than the known maximum absolute error, predicts will become known; when the prediction interval of not more than the known maximum range, the prediction will be controlled. Based on this principle, the prediction function predictive Chebyshev polynomials, Gn(x) polynomials are established. The polynomials based on differential equations, definitions, properties, mathematical tables, the existence of polynomial problems are demonstrated. The predictive type of the best approximation of g(x) polynomials, at y(x)1 0 conditions by Gn(x) polynomials posed, are provided. A specific algorithm to achieve the g(x) polynomials is presented. A way to make predictions closer to the actual value of the error compensation method is introduced, and some examples are given.
作者 顾乐民
机构地区 同济大学
出处 《计算机工程与应用》 CSCD 2012年第7期34-38,共5页 Computer Engineering and Applications
关键词 最佳一致逼近 切比雪夫多项式 预测 best uniform approximation Chebyshev polynomials prediction
  • 相关文献

参考文献5

二级参考文献9

  • 1Зворыкин A A.БиографическийСловарьДеятелейЕстествознанияиТехники[M].Москва:ИздательствоАкадемииНаукСССР,1959.
  • 2Markov A A.Selected works[M].Ed.Yu V Linnik.Leningrad,1951.
  • 3ШтокалоИЗ.ИсторияОтечественнойМатематики[M].Киев:ИздательствоНауквадумка,1967.
  • 4Gillispie Ch C.Dictionary of Scientific Biography[M].New York:Charles Scribner's Sons,vol.3.1971.
  • 5Kolmogorov A N.,Yushkevich A P.Mathematics Of The 19th Century(vol.3)[M].Basel; Boston; Berlin:Birkhauser,1992.
  • 6Sheynin O B A A.Markov's work on probability[J].Arch.History Exact Sci,1989,39(3):347.
  • 7ЦесевичВПАМ.Ляпунов[M].Москва:ИздательствоЗнани,1970.
  • 8МарковАА.БиографияА.А.Маркова[M].Москва:ИздательствоАкадемииНаукСССР,1951.
  • 9ПрудниковВЕПЛ.ЧебышевУченыйиПедагог[M].Москва:ИздательствоАкадемииНаукСССР,1964.

共引文献11

同被引文献61

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部