摘要
建立了依赖色谱保留时间的智能化选择反应监测质谱方法,并与非依赖色谱保留时间的智能化选择反应监测质谱分析方法对不同体系(牛血清白蛋白酶切物、6种标准蛋白质混合物酶切物、腾冲嗜热菌蛋白提取液酶切物)的分析结果进行了系统比较。结果表明,引入色谱保留时间后的智能化选择反应监测质谱方法能够显著提高肽段及蛋白质的鉴定量,并且在复杂体系(如腾冲嗜热菌蛋白提取液酶切物)中效果尤为明显,鉴定到的肽段及蛋白质的覆盖率可分别达到目标肽段和蛋白质数量的89.62%和92.41%,并且灵敏度高、重复性好,能够实现对质荷比相同但保留时间有差异的肽段的准确鉴定。该方法将在复杂生物样本目标蛋白质组高通量、高灵敏度的鉴定、验证和确认中发挥独特作用。
A method of liquid chromatographic retention time-dependent intelligent selected reaction monitoring mass spectrometry(iSRM MS) was established for the identification of targeted proteome,and was compared in detail with the method without liquid chromatographic retention time-dependent iSRM MS in the analysis results of different samples,such as the peptide mixtures from bovine serum albumin,six standard proteins or Thermoanaerobacter tengcongensis extract digested by trypsin.The results showed that the throughput of the identified peptides and the proteins was evidently increased with the method of liquid chromatographic retention time-dependent iSRM MS,especially in the complex sample such as Thermoanaerobacter tengcongensis extract.The coverage of the identified peptides and proteins from Thermoanaerobacter tengcongensis extract was reached 89.62% and 92.41% of the number of targeted peptides and proteins respectively.Higher sensitivity and reproducibility were also obtained.In addition,peptides with the same m/z but different retention times could be identified accurately when the method was used.With the higher throughput,better sensitivity and excellent reproducibility,the method of liquid chromatographic retention time-dependent iSRM MS can play an important role in the identification of targeted proteomes of complex biological samples in the future.
出处
《色谱》
CAS
CSCD
北大核心
2012年第2期170-177,共8页
Chinese Journal of Chromatography
基金
国家重大科学计划项目(2012CB910603和2010CB912701)
国家自然科学基金项目(20735005
20875101和20905077)
关键词
液相色谱
保留时间
智能化选择反应监测
质谱
目标蛋白质组学
腾冲嗜热菌
liquid chromatography(LC)
retention time
intelligent selected reaction monitoring(iSRM)
mass spectrometry(MS)
targeted proteomics
Thermoanaerobacter tengcongensis