期刊文献+

一种融合粗糙集与灰模的装备故障预测方法 被引量:3

A Fusion Algorithm of Equipment Fault Prediction Based on Rough Set theory and Grey Model
在线阅读 下载PDF
导出
摘要 结合粗糙集理论和灰色系统理论对不精确信息处理的优势,文中提出一种融合粗糙集理论与GM(1,1)灰色预测模型的故障预测方法,先运用粗糙集的属性约简算法对故障诊断决策表进行约简,推出最优诊断规则,再利用GM(1,1)灰色预测模型对约简决策表中的各条件属性测试值计算得到其预测值,从而代回约简的诊断决策表进行故障预测,最后在某型机载电台装备中以某一故障为例进行应用验证,结果表明故障预测效率和精度都较高,从而为提高装备的可靠性和维修性提供依据。 Rough Sets Theory and Grey System Theory both have the same advantage of processing inaccuracy data,so a fusion algorithm based on Rough Sets Theory and GM(1,1)Grey prediction model is proposed.The attribute reduction algorithm of Rough Sets Theory reduces the fault diagnosis decision table,and the optimal diagnosis rules are deduced.Then,GM(1,1)calculates the condition attributes predicted value of reduced decision table by their test value,which substitutes back to the reduction diagnosis decision table for fault prediction.It is verified in one fault of some aero radio equipment,and the results indicate that the efficiency and accuracy of fault prediction are both quite higher,which provides the foundation to improve the equipment reliability and maintainability.
出处 《计算机测量与控制》 CSCD 北大核心 2012年第2期291-293,306,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(60802088)
关键词 灰色系统理论 粗糙集理论 融合 故障预测 grey system theory rough sets theory fusion fault prediction
  • 相关文献

参考文献5

二级参考文献16

共引文献28

同被引文献24

  • 1Bian M M, Shi J, Wang S P. FTA-basedfault diagnosse expert system for hydraulic equiment Ec EA. Beijing: Fluid Power and Mechatronics (FPM) -C. 2011: 959-963.
  • 2张梅,李泽滔.非线性系统故障诊断方法[J].电源技术应用,2013,6(1):458-459.
  • 3Lin Y H, Lee P C, Chang T P. Practical expert diagnosis model based on the grey relational analysis technique [J]. Expert Sys- tems with Applications, 2009, 36 (2): 1523-1528.
  • 4Masahiro Tsunoyama, Hirokazu Jimno, Masayuki Ogawa, et al. An application of fuzzy measure and integral for diagnosing fault in rotating machines r J]. Toolsappli with Artificial Intel, 2009. 121-133.
  • 5Xiong W, Su Y P, Zhou Y J, et al. Intelligentault diagnosis of rotating machinery based on grey similar relation degree [J]. A merican Journal Engineering and Technology research, 2011, 11 (12): 2089-2092.
  • 6CROSTON J. Forecasting and Stock Control for IntermittentDemands [ J ]. Operational Research Quarterly, 1997, 23 ( 3 ) :289 - 303.
  • 7SYNETO A A, BOYLAN J E. On the Bias of Intermittent Demand Estimate [ J ]. International Journal of Production E- conomics ,2001,71 ( 1/2/3 ) :457 - 466.
  • 8LEVEN E,SEGERSTEDT A. Inventory Control with a Mod- ified Croston Procedure and Erlangdistribution [ J ]. Interna- tional Journal of Production Econormics, 2004,90 ( 3 ) : 361 - 367.
  • 9ROMEIJNDERS W,TEUNTER R, VAN JAA RSVELDW. A Two- step Method for Forecasting Spare Parts Demand U- sing Information on Component Repairs[ J ]. European Jour- nal of Operational Research,2012,220(2) :386-393.
  • 10GRANGE F. Challenges in Modeling Demand for InventoryOptimization of Slow Moving Items [ C ]// Simulation Con- ference Proceedings. Washington, DC: IEEE, 1998:1211 - 1217.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部