期刊文献+

基于邻近测风塔的风电场长期风速估算 被引量:6

LONG TERM WIND SPEED EVALUATION BASED ON NEIGHBORING METEOROLOGICAL MASTS
原文传递
导出
摘要 分别采用线性相关方法、物理方法和支持向量机(SVM)方法对内蒙古不同地形的两个风电场进行了基于邻近测风塔2个月学习数据的10个月平均风速估算研究,给出了较详细的实现过程,并比较了3种估算方法的预测精度。计算结果表明,线性相关方法能快速给出预测结果,但要求两塔之间的空间相关性良好;物理方法对较平坦地形估算结果精度较高,但对于较复杂地形估算结果平均百分比误差高达15%;SVM方法能给出精度较高的估算结果,在两个风电场的估算平均百分比误差均小于5%,对复杂地形适应性强,综合结果好于其他两种方法。 Three methods were investigated to evaluate ten-month wind speed based on the two-month learning data of the neighboring masts, which located in two wind farms with different terrains in Inner Mongolia. The adopted strategies were linear correlation method, physical method and the support vector machine (SVM) method. The performance of three estimation methods were comprehensively compared. The calculated results show that the linear correlation method can yield the estimation results quickly, while the good spatial correlation between the two masts is required ; the physical method performs excellently for the fiat terrain, while its performance is poor for the complex terrain with the mean absolute percentage error (MAPE) of 15% ; the SVM method functions well for the two wind farms with the MAPE less than 5%. Therefore, the SVM method is robust for the complex terrain and exceeds other two methods in a whole.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2012年第2期230-235,共6页 Acta Energiae Solaris Sinica
基金 国家自然科学基金重点项目(50837003) 国家重点基础研究发展计划(2009CB219701)
关键词 长期风速估算 线性相关 物理方法 SVM方法 long term wind speed evaluation linear correlation physical method support vector machine method
  • 相关文献

参考文献10

  • 1Frandsen S, Christensen C J. Accuracy of estimation ofenergy production from wind power plants [ J ]. Wind Ener- gy, 1992, 16(5) : 257-267.
  • 2Nfaoui H, Buret J, Sayigh A A M. Wind characteristics and wind energy potential in Morocco [ J ]. Solar Energy, 1998, 63(1) : 51-60.
  • 3薛敏,袁春红,薛桁.用短期风记录估算长期风速的方法[J].气象,2002,28(6):28-31. 被引量:6
  • 4Bowen A J, Mortensen N G. Exploring the limits of WAsP the wind atlas analysis and application program [ A ]. Pro- ceedings of European Union Wind Energy Conference [ C], Goteburg, Sweden, 1996.
  • 5冯长青,杜燕军,包玲玲,车利军.WT在风电场风能资源推算中的应用[J].安徽农业科学,2009,37(19):9293-9296. 被引量:7
  • 6Ayotte K W, Davy R J, Coppin P A. A simple temporal and spatial analysis of flow in complex terrain in the con- text of wind energy modeling[J]. Boundary-Layer Meteor- ology, 2001, 98(2): 275-295.
  • 7彭怀午,杨晓峰,刘方锐.基于SVM方法的风电场短期风速预测[J].电网与清洁能源,2009,25(7):48-52. 被引量:25
  • 8Vapnik V N. The nature of statistical learning theory [M]. NY: Springer-Verlag, 1995.
  • 9Cortes C, Vapnik V. Support-vector network [ J ]. Ma- chine Learning, 1995, 20(3) : 273-297.
  • 10Wood N. The onset of separation in neutral turbulent flow over hills [ J ]. Boundary-Layer Meteorology, 1995, 76 ( 1 ) : 137-164.

二级参考文献19

共引文献35

同被引文献94

  • 1刘静,杨凤志,王尹,李瑞,阮夏.测风数据插补延长对发电量计算的影响[J].船舶工程,2022,44(S02):138-143. 被引量:2
  • 2杜燕军,冯长青.风切变指数在风电场风资源评估中的应用[J].电网与清洁能源,2010,26(5):62-66. 被引量:33
  • 3马惠群,曲宁,李超,王守峰.风电场风切变指数研究[J].电网与清洁能源,2012,28(6):88-90. 被引量:13
  • 4刘永前,韩爽,胡永生.风电场出力短期预报研究综述[J].现代电力,2007,24(5):6-11. 被引量:72
  • 5Landberg L. Prediktor: An on-line prediction system[C]//Wind Power for the 21st Century,EUWEC Special Topic Conference. Kassel Germany, 2000.
  • 6Lange B, Rohrig K, Ernst B, et al. Wind power prediction in Germany: Recent advances and future challenges [C]//European Wind Energy Conference, Athens,2006.
  • 7Zack J W,Brower M C,Bailey B H. Validating of the for ewind model in wind forecasting application[C]//EU- WEC Special Topic Conference Wind Power for the 21st Century,Kassel Germany,2000.
  • 8Erasmo Cadenas, Wilfrido Rivera. Short term wind speed forecasting in La Venta, Oaxaca, Mexico, using artificial neural networks[J]. Renewable Energy, 2009,34( 1 ) : 274-278.
  • 9Peng H W,Liu F R,Yang X F. A hybrid strategy of short term wind power prediction[J]. Renewable Energy, 2013,50:590-595.
  • 10SINGH S, BHATTI T S, KOTHARI D P. A review o wind resource-assessment technology [ J ]. Journal of Energy Engineering, 2006, 132(1): 8-14.

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部