期刊文献+

Internet环境下并行群组数据挖掘模型 被引量:2

Parallel group data mining model in Internet environment
在线阅读 下载PDF
导出
摘要 随着Internet技术的发展,分布式数据挖掘越来越受到重视。分布式数据挖掘急需一种能聚合多种网络功能为通信媒介,松耦合、并行的数据挖掘架构。以分析经典并行数据挖掘模型PADMA和BODHI为基础,结合现实需要给出了一种新的并行分布式数据挖掘模型——PADMAN。模型采用分治策略,将数据挖掘任务进行划分并分配给数据挖掘组,群组之间并行挖掘;基于Agent,使各基本数据挖掘单元具有自治性;群组客户端和全局客户端可实现无线接入,使用户端的使用和接入更加灵活。分治策略的应用,使模型具有良好的模块化和可扩展性。 Along with the development of Intemet, distributed data mining is receiving more and more attention. Distributed data mining needs a kind of loose coupling and parallel data mining framework, which can congregate multiple network functions as communication media. Based on the analysis of the classic parallel data mining models PADMA and BODHI, this paper proposes a new parallel distributed data mining model--PADMAN. Divide-and-conquer strategy being used in the model, in which data mining tasks are partitioned and distributed to data mining groups, and different groups process data mining tasks in parallel. Owing to based on agent of this model, all basic data mining units are autonomous. Even more, both group clients and global clients can be connected by wireless network which increases the flexibility for users using or accessing the system. The application of divide-and-conquer strategy equips the model with much better modularization and scalability.
出处 《计算机工程与应用》 CSCD 2012年第6期134-138,共5页 Computer Engineering and Applications
基金 河北省教育厅自然科学项目(No.2008472 2010259) 河北省科学技术研究与发展计划项目(No.072435158D 09213515D 09213575D 09457244D) 河北师范大学博士基金资助项目(No.L2006B03) 河北师范大学重点基金资助项目(No.L2007Z01) 河北师范大学硕士基金资助项目(No.200902003)
关键词 数据挖掘 分治策略 AGENT 分布式数据挖掘 data mining divide-and-conquer strategy Agent distributed data mining
  • 相关文献

参考文献10

  • 1Han J,Kamber M.Data mining: concepts and techniques[M].2nd ed.San Francisco: Morgan Kaufman Publishers, 2006: 4-17.
  • 2Stolfo S, Prodromidis A L, Tselepis S, et al.JAM: Java agents for meta-learning over distributed databases[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, 1997: 74-81.
  • 3Kargupta H,Hamzaoglu I,Stafford B.Scalable,distributed data mining using an agent based architecture[C]//Proc of KDD'97 Conference.Menlo Park, CA: AAAI Press, 1997 : 211-214.
  • 4Kargupta H,Park B,Hershberger D,et al.Collective data mining: a new perspective toward distributed data mining[C]//Proceedings of Advances in Distributed and Parallel Knowledge Discovery.[S.1.]:AAAI/ MIT Press,2000:131-178.
  • 5庄艳,陈继明,徐丹,潘金贵.基于Multi-agents系统的分布式数据挖掘[J].计算机科学,2007,34(12):163-167. 被引量:10
  • 6Tsoumakas G, Vlahavas I.Distributed data mining[J].Information Science Reference,2009:157-164.
  • 7Srivastava A N.Data mining at NASA: from theory to applications[C]//Proceedings of KDD' 09, Paris, France, June 28-July 1, 2009.
  • 8Park B,Kargupta H.Distfibuted data mining: algorithms, systems, and applications[M]//Nong Ye.Data Mining Handbook.[S.1.]: IEA, 2002.
  • 9李成安,吴铁军.基于移动代理的层次优化挖掘模型[J].电子科技大学学报,2007,36(2):281-284. 被引量:2
  • 10Wooldridge M.多Agent系统引论[M].石纯一,译.北京:电子工业出版社,2003.

二级参考文献6

  • 1KARGUPTA H.An introduction to distributed data mining[EB/OL].http:/www.eecs.wsu.edu/~hillol,2005-03-04.
  • 2YE N.The handbook of data mining[M].Metairie:LEA Inc.,2003.
  • 3HLUSCH M,LODI S,MORO G.The role of agent in distributed data mining:issues and benefits[C]//Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (IAT'03).Halifax:IEEE Press,2003.
  • 4SENOUSY M,MEDHAT M.A proposed model for distributed data mining using mobile agents[C]//Proceedings of the 11th Annual BIT2001 Conference.Manchester:Manchester Metropolitan University Press,2001.
  • 5CHEN R,GIANNELLA C,SIVAKUMAR K,et al.Distributed data mining for earth and space science applications[C]// Proceedings of the NASA Earth Science Technology Conference.Palo Alto:ACTA Press,2004.
  • 6陈刚.基于代理的分布式数据挖掘系统设计[J].计算机工程,2001,27(9):65-67. 被引量:20

共引文献35

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部