期刊文献+

基于测地线距离的核密度判别法

Kernel density discriminant method based on geodesic distance
原文传递
导出
摘要 利用Isomap降维方法计算可以反映流形几何结构的测地线距离,用测地线距离代替欧氏距离,结合核密度估计,提出基于测地线距离的核密度判别法.模拟数据和真实数据测试结果显示,该方法判别效果良好. By using Isomap dimension reduction methods,we substitute the Euclidean distance with the geodesic distance which can reflect the manifold geometry.Combining with kernel density estimation,the geodesic distance discriminant method is constructed that works well on the simulation and real data.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第6期807-810,818,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福州大学科技发展基金资助项目(2011-XY-19) 福州大学研究生教育研究资助项目(09AY09)
关键词 ISOMAP 测地线 核密度估计 判别 Isomap geodesic curves kernel density estimation discriminant
  • 相关文献

参考文献11

  • 1陈维恒,李兴校.黎曼几何引论[M].北京:北京大学出版社,2002.
  • 2白正国,沈一兵,水乃翔,等.黎曼几何引论[M].北京:高等教育出版社,2004.
  • 3Jurgen Jost. Riemannian geometry and geometric analysis[ M ]. Berlin: Springer- Verlag, 2002.
  • 4Tenenbaum J B, Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000, 290:2319-2322.
  • 5孟德宇,徐晨,徐宗本.基于Isomap的流形结构重建方法[J].计算机学报,2010,33(3):545-555. 被引量:20
  • 6Givens G H,Hoeting J A.计算统计[M].王兆军,等译.北京:人民邮电出版社,2009.
  • 7毛国军,段立娟,王实,等.数据挖掘原理与算法[M].北京:清华大学出版社,2005.
  • 8Kaufman L, Rousseeuw P J. Finding groups in data: an introduction to cluster analysis[ M]. Hoboken: Wiley, 2005.
  • 9Samko O, Marshall A D, Rosin P L. Selection of the optimal parameter value for the Isomap algorithm [ J ]. Pattern Recognition Letters, 2006, 27(9): 968-979.
  • 10王勇,吴翊.Isomap的最优嵌入维数的估计算法[J].系统仿真学报,2008,20(22):6066-6069. 被引量:3

二级参考文献41

  • 1谭璐,吴翊,易东云.基于LLE方法的本征维数估计[J].模式识别与人工智能,2006,19(1):7-13. 被引量:7
  • 2詹德川,周志华.基于流形学习的多示例回归算法[J].计算机学报,2006,29(11):1948-1955. 被引量:16
  • 3Tenenbaum J B, Silva V de, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction [J]. Science (S0036-8075), 2000, 290(5500): 2319-2323.
  • 4Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding [J]. Science (S0036-8075), 2000, 290 (5500): 2323-2326.
  • 5Belkin M, Niyogi P. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation [J]. Neural Computation (S0899-7667), 2003, 15(6): 1373-1396.
  • 6Verleysen M. Learning High-Dimensional Data [C]//Ablameyko S, et al, eds. Limitations and Future Trends in Neural Computation. Amsterdam, The Netherlands: IOS Press, 2003: 141-162.
  • 7BruskeJ, Sommer G. Intrinsic Dimensionality Estimation with Optimally Topology Preserving maps [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1998, 120(5): 572-575.
  • 8Kegl B. Intrinsic Dimension Estimation using Packing Numbers [C]// Procs. of the Conference on Neural Information Processing Systems, Vancouver, Canada. Cambridge, USA: MIT Press, 2002: 681-688.
  • 9Mardia K V, Kent J T, Bibby J M. Multivariate Analysis [M]. London, UK: Academic Press, 1979.
  • 10Samko O, Marshall A D, Rosin P L. Selection of the Optimal Parameter Value for the Isomap Algorithm [J]. Pattern Recognition Letters (S0167-8655), 2006, 27(7): 968-979.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部