期刊文献+

基于隐Markov模型的微径铣刀磨损监测 被引量:7

Hidden Markov model based micro-milling tool wear monitoring
在线阅读 下载PDF
导出
摘要 以微径铣刀磨损程度的识别为研究对象,考虑可能出现的单齿切削现象,建立了刀具磨损的隐Mark-ov模型。模型首先判断刀具在稳态切削情况下是否出现单齿切削现象,随后以小波分解的方式分别提取切削力特征。通过Fisher线性判别提取8个最优的切削力特征,作为隐Markov模型训练的输入向量。对于多组切削参数为单齿切削和两齿交替切削,分别训练三个不同磨损阶段的隐Markov模型,用以识别刀具真实磨损状态,并通过Euclidian线性判别确定最适应的识别模型。实验结果表明,该方法能够准确识别微径铣刀磨损状态,准确率在85%左右。 By taking the micro-milling tool wear identification as research object and through considering the possible phenomenon of single edge cutting,Hidden Markov Model(HMM) of tool wear was established.HMM judged whether the single edge cutting phenomenon appeared or not in steady-state cutting condition firstly.Then wavelet packet decomposition was used to extract the cutting force feature.Eight optimal cutting force features were extracted as HMM training input vectors by Fisher linear discriminance.For single edge cutting and two edges alternative cutting of multiple cutting parameters,three different wear stage HMMs were established to identify the actual wear state of tools,and the most suitable recongnition model was determined through Euclidian linear discriminance.The experimental results showed that the micro-milling tools wear state could be accurately identified by HMM,and the accuracy rate was about 85%.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第1期141-148,共8页 Computer Integrated Manufacturing Systems
基金 国家科技重大专项资助项目(2009ZX04002-051)~~
关键词 微径铣刀 刀具磨损 单齿切削现象 隐MARKOV模型 micro-milling tool tool wear single edge cutting hidden Markov model
  • 相关文献

参考文献17

  • 1HONG G S, RAHMAN M, ZHOU Q. Using neural network for tool condition monitoring based on wavelet decomposition[J]. International Journal of Machine Tools and Manufacture, 1996,36 (5) : 551-566.
  • 2SUN J, HONG G S, RAHMAN M, et al. Identification of feature set for effective tool condition monitoring by acoustic emission sensing[J]. International Journal of Production Re- search,2004,42(5) :901-918.
  • 3WANG W H, HONG G S, WONG Y S, et al. Sensor fusion for on-line tool condition monitoring in milling[J]. Interna- tional Journal of Production Research, 2007, 45 (21): 5095-5116.
  • 4OWSLEY L M D, ATLAS L E, BERNARD G D. Self-organi- zing feature maps and hidden Markov models for machine tool monitoring [J]. IEEE Transactions on Signal Processing, 1997,45(11) : 2787-2798.
  • 5ATLAS L, OSTENDORF M, BERNARD G D. Hidden Mar- kov models for monitoring machining tool-wear[C]//Proceed- ings of 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Washigton,D. C. ,USA:IEEE, 2000 : 3887-3890.
  • 6艾长胜,王宝光,董全成,何光伟.基于声信号HMM的刀具磨损程度分级识别[J].组合机床与自动化加工技术,2007(7):26-29. 被引量:9
  • 7吕俊杰,王杰,王玫,吴越.基于SOM和HMM结合的刀具磨损状态监测研究[J].中国机械工程,2010,21(13):1531-1535. 被引量:6
  • 8HECK L P, MCCLELLAN J H. Mechanical system monito-ring using HMMs[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, D. C. , USA: IEEE, 1991,3 : 1697-1700.
  • 9WANG L, MEHRABI M G, ELIJAH K A. Hidden Markov model-based tool wear monitoring in turning [J]. ASME Journal of Manufacturing Science and Engineering, 2002,124 (3) :651-658.
  • 10李成锋.介观尺度铣削力与表面形貌建模及工艺优化研究[D].上海:上海交通大学,2007.

二级参考文献12

  • 1柳新民,邱静,刘冠军.基于小波包—连续HMM的故障诊断模型及应用[J].中国机械工程,2004,15(21):1950-1953. 被引量:5
  • 2王太勇,郭千里,赵国立,曾子平.刀具磨损声振特性的功率谱分析[J].天津大学学报,1995,28(4):582-584. 被引量:9
  • 3艾长胜,王宝光,董全成,樊宁,赵洪华.基于语音识别技术的刀具工况在线监测的研究[J].组合机床与自动化加工技术,2005(12):59-61. 被引量:1
  • 4董全成,艾长胜,樊宁.刀具磨损声谱特征的分析[J].组合机床与自动化加工技术,2006(3):35-38. 被引量:11
  • 5Ko T J, Cho D W. Adaptive Modelling of the Milling Process and Application of a Neural Network for Tool Wear Monitoring[J]. International Journal of Advanced Manufacturing Technology, 1996,12 ( 1 ): 5-13.
  • 6Chung K T,Geddam A. A Multi--sensor Approach to the Monitoring of End Milling Operations[J].Journal of Materials Processing Technology, 2003, 139(3) :15-20.
  • 7Hatzipantelis E, Murray A,Penman J. Comparing Hidden Markov Models with Artificial Neural Network Architectures for Condition Monitoring Applications[C]// Fourth International Conference on Artificial Neural Network. UK : Cambridge, 1995 : 369-374.
  • 8Zeng J, Liu Z Q. Type--2 Fuzzy Hidden Markov Models and Their Application to Speech Recognition [J].IEEE Transactions on Fuzzy Systems,2006,14 (3) :454-470.
  • 9Atlas L, Ostendorf M,Bernard G D. Hidden Markov Models for Monitoring Machining Toolwear [C ]//International Conference on Acoustics, Speech,and Signal Processing. Washington. D.C. , USA : IEEE Computer Society, 2000 : 3887-3890.
  • 10Trang Y S. Study of Milling Force Pulsation Applied to the Detection of Tool Breakage[J].Int. J. Mach. Tool. Manu. ,1990,30(4) :651-660.

共引文献52

同被引文献52

引证文献7

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部