期刊文献+

一类非线性分数阶微分方程组的爆破解 被引量:2

Blowing-up Solutions of a Type of Nonlinear System of Fractional Differential Equations
在线阅读 下载PDF
导出
摘要 用Laplace变换法研究一类时间分数阶非线性微分方程组,得到了与其等价的积分方程组.结果表明,积分方程组存在局部解.用Hlder不等式估计非线性时间方程组,得到了该方程组具有有限时间的爆破解. The authors focused on the study of a type of nonlinear system of time-fractional differential equations,and obtainsed the system of the integral equations which is equivalent to the system of nonlinear partial differential equations with time-fractional derivative via the approach of Laplace transformation,and proved the existence of local solutions to the system of the integral equations.In addition,we investigated the blowing-up solutions to the nonlinear system of fractional differential equations using Hlder's inequality,and obtained the blowing-up solution of equation set in a finite time.
作者 代群 李辉来
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第1期1-5,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10771085)
关键词 分数阶微分方程 爆破解 LAPLACE变换 方程组 fractional differential equation blowing-up solution Laplace transformation system
  • 相关文献

参考文献13

  • 1HE Ji-huan. Some Applications of Nonlinear Fractional Differential Equations and Their Approximations [ J ]. Bull Sci Technol, 1999, 15(2): 86-90.
  • 2HE Ji-huan. Approximate Analytical Solution for Seepage Flow with Fractional Derivative in Porous Media [ J]. Comput Methods Appl Mech Eng, 1998, 167(1/2) : 57-68.
  • 3Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics [ M ]. Berlin: Springer Verlag, 1997.
  • 4Shimizu N, ZHANG Wei. Fractional Calculus Approach to Dynamic Problems of Viscoelastic Materials [ J ]. JSME International Journal: Series C, Mechanical Systems, Machine Elements and Manufacturing, 1999, 42(4) : 825-837.
  • 5Jumarie G. Further Results on the Modelling of Complex Fractals in Finance, Scaling Observation and Optimal Portfolio Selection [ J ]. Systems Analysis, Modelling Simulation, 2002, 42 (10) : 1483-1499.
  • 6HU Yao-zhong, Oksendal B. Fractional White Noise Calculus and Applications to Finance [ J ]. Infinite Dim Anal Quantum Probab Related Topics, 2003, 6( 1 ) : 1-32.
  • 7Jumarie G. New Stochasti Fractional Models for Malthusian Growth, the Poissonian Birth Process and Optimal Management of Populations [ J ]. Math Comput Modelling, 2006, 44 (3/4) : 231-254.
  • 8Gorenflo R, Mainardi F. Fractional Calculus : Integral and Differential Equations of Fractional Order [ C ]//Fractals and Fractional Calculus in Continuum Mechanics Vienna: Springer-Verlag, 1997: 223-276.
  • 9Podlubny I. Fractional Differential Equation[ M]. New York: Academic Press, 1999.
  • 10Podlubny I. Geometric and Physical Interpretation of Fractional Integratiation and Fractional Differential [ J ]. Fract Calculus Appl Anal, 2002, 5: 367-386.

同被引文献12

  • 1GENG Xiang-guo, CAO Ce-wen. Quasi-periodic solution of the (2 + 1 )-dimensional modified Korteweg-de equation[ J]. Physics Letters A, 1999, 261:289 -296.
  • 2ZHANG J S, WU Y T, LI X M. Quasi-periodic solution of the (2 + 1 ) -dimensional Boussinesq-Burgers soliton equation [ J ]. Journal of Physics A, 2003, 319:213 -232.
  • 3LI Y S, MAW X, ZHANG J E. Darboux transformations of classical boussinesq system and its new solutions[ J ]. Physics Letters A, 2000, 275 60 - 66.
  • 4LIU Ping, ZHANG Jin-shun. Darboux transformations of Broer-Kaup system and its odd-soliton solutions[ J]. Journal of Southwest China Normal U niversity, 2006 ( 5 ) :31 - 36.
  • 5WU Yongyan, WANG Chun, LIAO Shijun. Solving the One Loop Soliton Solution of the Vakhnenko Equation by Means of the Homotopy Analysis Method [J]. Chaos, Solitons ~ Fractals, 2004, 23(5) : 1733-1740.
  • 6SONG I.ina, ZHANG Hongqing. Application of Homotopy Analysis Method to Fractional KdV-Burgers- Kuramoto Equation[J].Phys Lett A, 2007, 367(1/2): 88-94.
  • 7Lesnic D. The Decomposition Method for Initial Value Problems [J]. Appl Math Comput, 2006, 181(1): 206-213.
  • 8Jafari H, Daftardar-Gejji V. Solving a System of Nonlinear Fractional Differential Equations Using Adomain Decomposition [J]. J Comput Appl Math, 2006, 196(2): 644-651.
  • 9Odibat Z, Momani S. Modified Homotopy Perturbation Method: Application to Quadratic Riccati Differential Equation of Fractional Order[J]. Chaos, Solitons & Fractals, 2008, 36(1) : 167-174.
  • 10Momani S, Odibat Z. Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order [J]. Chaos, Solitons & Fractals, 2007, 31(5) : 1248-1255.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部