期刊文献+

一种针对多分量信号的复延迟型时频分布的实现方法 被引量:4

A Realization of Time-Frequency Distributions with Complex-lag Argument for Multicomponent Signal
在线阅读 下载PDF
导出
摘要 复延迟型时频分布(CTD)是近年来提出的一种新型时频分布.对于单分量调频信号,CTD具有良好的时频聚集性.但是对于包含两个或两个以上分量的多分量调频信号,直接采用定义式或传统频域卷积方法实现的CTD会产生大量的互交叉项,影响了它在各领域的应用.本文对CTD的传统频域卷积实现方法进行了三方面的修正,提出了一种适合多分量调频信号的修正型CTD频域卷积实现方法.仿真结果表明,本文方法对于多分量调频信号,既保持了CTD所固有的时频聚集性高的优点又极大地抑制了不同信号分量间的互交叉项. A new type of time-frequency distribution with complex-lag argument (CrD) is proposed recent years. For mono- component signal, it provides a very high time-frequency concentration. However, for multicomponent signal, CTD realized by deft- hition or traditional frequency domain convolution method may gain a lot of cross terms. In this paper, three aspects of modifications have been done to traditional frequency domain convolution method of CTD. A new modified frequency domain convolution method of CTD suitable for multicomponent signal is proposed. CTD realized by the method which proposed by this paper provides very high time-frequency concentration and the cross-terms are greatly reduced at the same time. This fact is proven by simulation re- sults.
作者 王冉 姜义成
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第1期60-65,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60872100) 教育部博士点基金(No.20092302110032)
关键词 时频分布 复延迟型时频分布 多分量信号 频域卷积 time-frequency distribution time-frequency distributions with complex-lag argtunent multicomponent signal convolution in frequency domain
  • 相关文献

参考文献16

  • 1Cohen L. Time-frequency distributions- A review[J]. Proceed- ings of the IEEE, 1989,77(7) :941 - 981.
  • 2Barkat B, Boashash B. Design of higher-order polynomial wigner-ville distributions [ J]. IEEE Transactions on Signal Processing, 1999,47(9) :2608 - 2611.
  • 3Stankovic L J. Time-frequency dislributions with complex argu- ment[ J]. IEEE Transactions on Signal Processing, 2002, 50 (3) :475 - 486.
  • 4Baraniuk R G, Jones D L. A signal-dependent time-frequency representation: optimal kernel design[ J ]. IEEE Transactions on Signal Processing, 1993,41(4):1589- 1602.
  • 5Ristic B, Boashash B. Kernal design for time-frequency signal analysis using the Radon transform [ J ]. IEEE Transactions on Signal Processing, 1993,41 (5) : 1996 - 2008.
  • 6Stankovic L J. A multitime definition of the wigner higher order distribution: L- wigner distribution[ J]. IEEE Signal Processing Letters, 1994,1(7) : 106 - 109.
  • 7Stankovic L J, Stankovic S, Djurovic I. An architecture for the cross-terms free realization of the polynomial wigner distribu- tionE A]. Proceedings of the IEEE IC-Acoustics [ C ]. Munich, Germany: Speech and Signal Processing, 1997.2053 - 2056.
  • 8王勇,姜义成.多项式Wigner-Ville分布的频域卷积实现[J].电子与信息学报,2008,30(2):286-289. 被引量:5
  • 9Stankovic S,Zaric N,Orovic I,Ioana C. General form of time- frequency distribution with complex-lag argument[ J]. Eleclxon- ics Letters, 2008,44( 11 ) : 699 - 701.
  • 10Stankovic S, Orovic I, Ioana C. Effects of cauchy integral for- mula discretization on the precision of IF estimation: unified approach to complex-lag distribution and its counterpart L- form [ J ]. IEEE Signal Processing Letters, 21309, 16 (4) : 327 - 330.

二级参考文献40

  • 1牟永阁,彭承琳,郑小林.基于互Wigner-Ville分布的表面肌电信号瞬时频率估计[J].重庆大学学报(自然科学版),2004,27(9):96-98. 被引量:2
  • 2殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 3Ljubisa Stankovic.Time-frequency distributions with complex argument[J].IEEE Trans.Signal Processing,2002,50(3):475-486.
  • 4Ljubisa Stankovic.On the realization of the polynomial Wigner-Ville distribution for multi- component signals[J].IEEE Signal Processing Letters,1998,5(7):157-159.
  • 5Ljubisa Stankovic.A multitime definition of the Wigner higher order distribution:L-Wigner distribution[J].IEEE Signal Processing Letters,1994,1(7):106-109.
  • 6Ljubisa Stankovic.L-class of time-frequency distributions[J].IEEE Signal Processing Letters,1996,3(1):22-25.
  • 7Peter O'Shea.A new technique for Instantaneous frequency rate estimation[J].IEEE Signal Processing Letters,2002,9(8):251-252.
  • 8M Z Ikram,G Tong Zhou.Estimation of multicomponent polynomial phase signals of mixed orders[J].Signal Processing,2001,81:2293-2308.
  • 9Ljubisa Stankovic.S-class of time-frequency distributions[C].IEE proc.-vis.Image signal process,1997,144(2):57-64.
  • 10Peter O'Shea.A new technique for Instantaneous frequency rate estimation[J].IEEE Signal Processing Letters,2002,9(8):251-252.

共引文献181

同被引文献41

  • 1刘庆云,李志舜,李海英,梁红.多分量多项式相位信号的参量估计[J].电子学报,2004,32(12):2031-2034. 被引量:17
  • 2Bassem R.Mahafza.Radar Signal Analysis and Processing Using Matlab.Chapman&Hall/CRC,2009:109-119.
  • 3Boashash B. Estimating and interpreting the instantaneous fre- quency of a signal-Part h Fundamentals[ J]. Proceedings of the IEEE, 1992,80(4) :520 - 538.
  • 4Boashash B. Estimating and interpreting the instantaneous fre- quency of a signal-Part ll:Algorithms and applications[ J] .Pro- ceedings of the IEEE, 1992,80(4) :540 - 568.
  • 5Boashash B. Time Frequency Signal Analysis and Processing: A Comprehensive Reference [ M ]. London: Elsevier, 2003.63 - 66.
  • 6Sejdic E, Djurovic I, Jiang Jin. Time-frequency feature repre- sentation using energy concentration:An overview of recent ad- vances[ J ]. Signal Processing, 2009,19 (1) : 153 - 183.
  • 7Orovic I, Orlandic M, Stankovic S, et al. A virtual imtrument for time-frequency analysis of signals with highly nomtationary instantaneous frequency[ J]. Transaction on instrumenta- tion and measurement, 2011,60(3) : 791 - 803.
  • 8Stankovic L. A multitime definition of the Wigner higher order distribution: L-Wigner distribution [ J ]. mEE Signal ProcessingLetters, 1994,1 (7) : 106 - 109.
  • 9Barbarossa S, Scaglione A, Giannakis G B. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[ J ]. IEEE Transactions on Signal Processing, 1998,46 (3) :691 - 708.
  • 10Abatzoglou T J. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Transactions on Aerospace and Electronic Systems, 1986,22( 11 ) : 708 - 715.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部