期刊文献+

基于MSPF的实时监控多目标跟踪算法研究 被引量:18

Research on Real-time Multi-target Tracking Algorithm Based on MSPF
在线阅读 下载PDF
导出
摘要 近年来,实时监控下多目标跟踪作为智能交通系统(Intelli-gent transportation system,ITS)的重要组成部分受到关注.传统多目标跟踪方法通常具有处理速度慢、容易对交叉行进车辆产生误匹配等问题.本文首先对基于贝叶斯规则的车辆视频复杂背景的建模及运动目标的检测进行研究,在此基础上提出一种基于Mean shift粒子滤波(Mean shift particle filter,MSPF)的多目标跟踪算法,首先对每一目标车辆在下一帧可能出现的范围进行预测,对单目标和多目标情况采用不同的检测策略,避免了全局搜索,提高了跟踪速度;通过构造基于最新观测信息的重要性密度函数,提高了MSPF算法在复杂背景情况下追踪部分遮挡及交叉车辆的准确性和鲁棒性.仿真实验结果验证了所提出算法的有效性. Recently, real-time monitoring multi-target tracking as an important component of intelligent transportation system (ITS) has been paid much attention. The traditional multitarget tracking algorithm has problems that the processing speed is slow and the false matches may happen when vehicles cross. Firstly, the algorithm detects moving targets through modeling a complex background based on Bayesian rules, then introduces a multi-target tracking algorithm based on mean shift particle filter (MSPF). Firstly, the algorithm predicts the extent possible by the use of MSPF for each vehicle in the next frame, uses different detection strategies for simple or multiple targets to avoid a global search and improve the tracking speed; by con- structing the importance density function based on the latest observations, the algorithm can achieve an accurate and robust tracking in the part of the block and cross-vehicle. Simulation results verify the proposed algorithm.
出处 《自动化学报》 EI CSCD 北大核心 2012年第1期139-144,共6页 Acta Automatica Sinica
基金 辽宁省自然基金项目(20102123) 辽宁"百千万人才工程"项目(2008921036) 南京邮电大学图像处理与图像通信江苏省重点实验室开放基金(LBEK2010003) 计算机软件新技术国家重点实验室开放基金(KFKT2011B11)资助~~
关键词 视频车辆 多目标跟踪 Mean shift粒子滤波 鲁棒性 Video vehicle, multi-target tracking, mean shift particle filter (MSPF), robustness
  • 相关文献

参考文献3

二级参考文献54

  • 1马帅,唐世渭,杨冬青,王腾蛟.一种用于位置数据库结构调整的增量聚类算法[J].软件学报,2004,15(9):1351-1360. 被引量:5
  • 2查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 3Gupte S, Masoud O, Martin R F K, Papanikolopoulos N P. Detection and classification of vehicles. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(1): 37-47.
  • 4Rad R, Jamzad M. Real time classification and tracking of multiple vehicles in highways. Pattern Recognition Letters, 2005, 26(10): 1597-1607.
  • 5Kim Z W, Malik J. Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 524-531.
  • 6Sidla O, Paletta L, Lypetskyy Y, Janner C. Vehicle recognition for highway lane survey. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems. Washington D.C., USA: IEEE, 2004. 531-536.
  • 7Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI, 1996. 226-231.
  • 8Karypis G, Han E H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75.
  • 9Ertoz L, Steinbach M, Kumar V. Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data. In: Proceedings of the 3rd SIAM International Conference on Data Mining. San Francisco, USA: SIAM, 2003. 47-58.
  • 10Zhao Y, Karypis G. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 2004, 55(3): 311-331.

共引文献39

同被引文献170

引证文献18

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部