期刊文献+

基于sift特征匹配的人体上半身三维运动跟踪 被引量:1

3D Upper Human Body Motion Tracking Based on Sift Feather Matching
在线阅读 下载PDF
导出
摘要 研究人体姿态与视频优化跟踪问题,单目视频缺少深度信息,使得单目视频的人体运动跟踪难以实现三维姿态恢复问题。为解决上述问题,提出了一种利用sift特征尺度不变性的优点进行人体上半身三维运动跟踪的算法。在跟踪过程中先计算初始匹配sift特征点对,然后反复迭代出除误匹配点,消除误差,最后求解由两个匹配sift特征组成的方程组得到胸部关节的位姿,根据人体骨骼模型采用深度遍历依次恢复其它关节的姿态。实验结果表明,系统能够对人体上半身运动进行比较准确的三维运动跟踪。 Due to the absence of depth information in monocular video, the traditional human motion tracking based on monocular video sequences suffers from the problem of imprecise reconstruction of 3 D human pose. To overcome this problem, a new 3D upper human body tracking from monocular video sequences was proposed which took the fully advantage of SIFY scaling fixity. Firstly, the system obtained SIFT correspondences. Then, the outliers were filtered by a iterative optimization. Finally, the pose of joint clavicle was estimated by solving a system of equations parameterized by two matched SIFF feathers. We reconstructed the posture of other joints in depth-first order according to the configuration of human skeleton model. The experiments show that the proposed algorithm can effectively reconstruct human upper body motion pose from uncalibrated monocular video sequences.
作者 栗涛 陈姝
出处 《计算机仿真》 CSCD 北大核心 2012年第1期202-205,共4页 Computer Simulation
基金 国家自然科学基金(61040009)
关键词 运动跟踪 单目视频 人体模型 迭代优化 Motion tracking Monocular video sequences Human model Iterative optimization
  • 相关文献

参考文献8

二级参考文献46

  • 1陈坚,吴恩华.单目视频中人体三维运动的迭代优化估计[J].计算机辅助设计与图形学学报,2005,17(7):1523-1528. 被引量:2
  • 2陈坚,王文成,吴恩华.单目视频中无标记的人体运动跟踪[J].计算机辅助设计与图形学学报,2005,17(9):2033-2039. 被引量:13
  • 3邓宇,李振波,李华.基于视频的三维人体运动跟踪系统的设计与实现[J].计算机辅助设计与图形学学报,2007,19(6):769-774. 被引量:9
  • 4Deutseher J, Blake A, Reid I. Articulated body motion capture by annealed particle filtering [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 2000:126-133.
  • 5Wu Y, Hua G, Yu T. Tracking articulated body by dynamic Markov network [C]//Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, 2003: 1094-1101.
  • 6Chen Y S, Lee J, Parent R, et al. Markerless monocular motion capture using image features and physical constraints [C]//Proceedings of Computer Graphics International, New York, 2005: 36-43.
  • 7Zhao X, Liu Y C. Generative tracking of 3D human motion by hierarchical annealed genetic algorithm [J]. Pattern Recognition, 2008, 41(8): 2470-2483.
  • 8Rosales R, Sclaroff S. Inferring body pose without tracking body parts [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 2000: 721-727.
  • 9Agarwal A, Triggs B. Recovering 3D human pose from monocular images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 44-58.
  • 10Elgammal A, Lee C S. Inferring 3D body pose from silhouettes using activity manifold learning [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004:681-688.

共引文献33

同被引文献20

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部