期刊文献+

基于关联反馈技术的用户兴趣模型的建立与自适应更新 被引量:2

User Interest Modeling and Updating Based on Relevance Feedback Technology
在线阅读 下载PDF
导出
摘要 用户兴趣模型是个性化服务系统的一个核心组成部分。为进一步提高模型准确性,提出一种搜集用户多种交互行为,结合隐式反馈技术构建用户兴趣模型的方法。该方法引入时间衰减度和显式反馈技术,使之能对用户兴趣模型进行自适应更新,对实现个性化的信息检索与过滤系统具有较高的参考价值。 The user interest modeling is a core component of the personalized service system. To improve the accuracy of the user interest modeling, this paper presents an algorithm by collecting a variety of users' interactions, with the implicit feedback techniques. And to conduct an adaptive updating of the user interest modeling, this algorithm considers the use of the time-attenuation parameter and the explicit feedback techniques, which produces more values for personalized information retrieval and filtering system.
出处 《金陵科技学院学报》 2011年第4期35-39,共5页 Journal of Jinling Institute of Technology
关键词 个性化服务 用户兴趣模型 关联反馈 隐式反馈 personalized service user interest relevance feedback implicit feedback
  • 相关文献

参考文献8

二级参考文献77

  • 1赵鹏,耿焕同,王清毅,蔡庆生.基于聚类和分类的个性化文章自动推荐系统的研究[J].南京大学学报(自然科学版),2006,42(5):512-518. 被引量:13
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:149
  • 3Sarwar B, Karypis G, Konstan J, etal. Item based collaborative filtering recommendation algorithms. Proceedings of the 10^th International Conference on World Wide Web, 2001, 285-295.
  • 4Takacs G, Pilaszy I, Nementh, et al. Scalable collaborative filtering approaches for large rec ommender system. Journal of Machine Learning Research, 2009(10):623-656.
  • 5Linden G, Smith B, York J. Amazon. com recommendations: Item-to item collaborative filtering. IEEE Internet Computing, 2003, 7 (1): 76-80.
  • 6Das A, Datar M, Garg A. Google news personalization: Scalable online collaborative filtering. Proceeding of the WWW 2007/Track: Industrial Practice and Experience. Banff, Alberta, Canada, 2007, 271-280.
  • 7Park S, Pennock D. Applying collaborative filtering techniques to movie search for better ranking and browsing. Proceedings of the 13^th Association for Cmputing Machinery Special Interest Group on Kniwledge Discovery in Data. San Jose, California, USA, 2007, 550-559.
  • 8Bell R, Koren Y. Improved neighborhood based collaborative filtering. KDD-Cup and Workshop at the 13^th Association for Cmputing Machinery Special Interest Group on Kniwledge Discovery in Data International Conference on Knowledge Discovery and Data Mining, 2007, 7-14.
  • 9Deshpande M, Karypis G. Item-based top N recommendation algorithms. Association for Cmputing Machinery Transactions on Information Systems(TOIS), 2004,22(1) :143-177.
  • 10Zhang Y C, Liu Y Z. A Collaborative filtering algorithm based on time period partition. The proceeding of 3^rd International Symposium on Intelligent Information Technology and Security Informaties, 2010, 777-780.

共引文献347

同被引文献42

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部