期刊文献+

利用人工神经网络预测芳香化合物的生物可降解性 被引量:6

PREDICTION OF THE BIODEGRADABILITY OF AROMATIC SUBSTANCES USING ARTIFICIAL NEURAL NETWORKS
在线阅读 下载PDF
导出
摘要 本文采用简单的化学基团描述符来表征化学物质的结构、以底物的最大比去除速率表征生物可降解性的大小,运用自编的人工神经网络对芳香族化合物的生物可降解性进行了研究.试验过程中,按芳香族化合物最大比底物去除速率的大小将其生物可降解性分为四组:不降解、难降解、可降解、易降解.随机抽取10%的有机化合物作为预测集,余下的作为训练集,共进行了四次预测试验,正确预测率分别达80%,80%,4O%,80%,这显示了人工神经网络对芳香族化合物的生物可降解性有较好的预测性能. Based on the substituted functional groups and their positions as the chemical structure descriptors, and the substrates' maximum specific biodegradation rates as the ability of their biodegran-dability. the aromatic compounds' degradabilities were studied using the authors constructed artificial nerual networks. During the experiment, the aromatic compounds' degradabilities were artificially classified as hardly biodegradable, hard biodegradable, biodegradable, and easy biodegradable according their maximum specific biodegradation rates, 10% substances were randomly subtracted as the prediction sets, and the rest were treated as the training sets. The correct prediction rates were 80% , 80%, 40%, and 80% respectively in the total four tests. These results showed that the artificial neural networks has the good ability to predict the biodegradability of aromatic substances.
出处 《环境化学》 CAS CSCD 北大核心 2000年第1期48-52,共5页 Environmental Chemistry
关键词 神经网络 芳香族化合物 生物可降解性 污染物质 artificial neural networks, aromatic substances, biodegradability prediction.
  • 相关文献

参考文献2

  • 1王连生,分子结构、性质与活性,1997年
  • 2中国环境优先监测研究课题组,环境优先污染物,1989年

同被引文献97

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部