期刊文献+

毛细管中泰勒流液侧传质特性及其强化机理的CFD模拟 被引量:1

CFD simulations of liquid side local mass transfer characteristics and enhancement in capillaries under Taylor flow
在线阅读 下载PDF
导出
摘要 采用计算流体力学(CFD)的方法,研究了圆管中泰勒流的液侧传质特性,分析了泰勒气泡上局部传质特性,并研究了气泡上升速度、液膜长度和液栓长度对液膜处和气泡半球帽处平均传质系数的影响。结果表明,泰勒气泡表面局部传质系数存在3个峰值,液膜处的平均传质系数随气泡上升速度增大显著增大,随液膜长度增大而减小,而半球帽处的平均传质系数随气泡速度和液膜长度的增大变化较小,即膜接触时间增加时,液膜处的传质系数降低,而半球帽处传质系数变化较小。另外,引入场协同原则对单元胞内速度场和浓度场进行分析,解释了局部传质特性及强化机理。最后,给出了分别预测短和长膜接触时间下泰勒流液侧体积传质系数的关联式,该式在较宽的管径尺度范围(0.25~3mm)内的预测误差在±20%以内。 The characteristics of liquid side mass transfer under Taylor flow in capillaries were studied by performing computational fluid dynamics(CFD) simulations.The local mass transfer coefficients on bubble surface were evaluated,and the effects of bubble rise velocity,length of liquid film and slug length on the mean mass transfer coefficients of liquid film and the two caps were investigated.Three peak values of local mass transfer coefficient were found on bubble surface.The average mass transfer coefficient of liquid film increases with the increase of bubble rise velocity and decrease of liquid film length,whereas the average mass transfer coefficient of the two caps varies less.Mass transfer coefficient in liquid film decreases as the film contact time increases,while that in the caps changes less.Moreover,the principle of field synergy was used to explain the characteristics and enhancement of local mass transfer.The coordination between the velocity and concentration fields was better near the liquid film and two bubble caps.The results show that short film contact time for the same contact area could enhance the gas-liquid mass transfer under Taylor flow.Finally,empirical correlations were proposed to predict the liquid side volumetric mass transfer coefficients for short and long film contact time separately,and the predicted values in capillaries with diameters of 0.25—3 mm have a relative error within ±20%.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第1期42-50,共9页 CIESC Journal
基金 国家重点基础研究发展计划项目(2006CB202503) 国家自然科学基金创新研究群(20821004)~~
关键词 泰勒流 气液传质 传质强化 场协同 计算流体力学 Taylor flow gas-liquid mass transfer mass transfer intensification field synergy CFD
  • 相关文献

参考文献22

  • 1Nijhuis T A, Kreutzer M T, Romijn A C J, Kapteijn F, Moulijn J A. Monolithic catalysts as efficient three-phase reactors [J]. Chemical Engineering Science, 2001, 56 (3) : 823-829.
  • 2Roy S, Bauer T, Al-Dahhan M, Lehner P, Turek T. Monoliths as multiphase reactors: a review [J]. AIChE Journal, 2005, 50 (11): 2918-1938.
  • 3Kreutzer M T, Kapteijn F, Moulijn J A, Ebrahimi S, Kleerebezem R, van Loosdrecht M C M. Monoliths as biocatalytic reactors: smart gas-liquid contacting for process intensification[J]. Ind. Eng. Chem. Res. , 2005, 44 (25): 9646-9652.
  • 4Kreutzer M T, Kapteijn F, Moulijn J A, Heiszwolf J J. Multiphase monolith reactors: chemical reaction engineering of segmented flow in microchannels [J]. Chemical Engineering Science, 2005, 60 (22): 5895-5916.
  • 5陈光文,乐军,袁权.Gas-Liquid Microreaction Technology: Recent Developments and Future Challenges[J].Chinese Journal of Chemical Engineering,2008,16(5):663-669. 被引量:19
  • 6Diuska E, Wrofiski S, Hubacz R. Mass transfer in gasliquid Couette Taylor flow reactor [J]. Chemical Engineering Science, 2001, 56 (3): 1131-1136.
  • 7乐军,陈光文,袁权,罗灵爱,LE GALL Hervé.微通道内气-液传质研究[J].化工学报,2006,57(6):1296-1303. 被引量:25
  • 8Gunther A, Jhunjhunwala M, Thalmann M, Schmidt M A, Jensen K F. Micromixing of miscible liquids in segmented gas-liquid flow [J]. Langmuir, 2005, 21 (4) : 1547-1555.
  • 9Irandoust S, Andersson B. Simulation of flow and mass transfer in Taylor flow through a capillary [J]. Computers Chemical Engineering, 1989, 13 (4/5) : 519-526.
  • 10Nijhuis T A, Dautzenberg F M, Moulijna J A. Modeling of monolithic and trickle-bed reactors for the hydrogenation of styrene [J]. Chemical Engineering Science, 2003, 58 (7) : 1113-1124.

二级参考文献39

  • 1乐军,陈光文,袁权.微混合技术的原理与应用[J].化工进展,2004,23(12):1271-1276. 被引量:20
  • 2乐军,陈光文,袁权,罗灵爱,LE GALL Hervé.微通道内气-液传质研究[J].化工学报,2006,57(6):1296-1303. 被引量:25
  • 3Jagota A K,Rhodes E,Scott D S.Mass transfer in upwards co-current gas-liquid annular flow.Chem.Eng.J.,1973,5 (1):23-31
  • 4Scott D S,Hayduk W.Gas absorption in horizontal cocurrentbubble flow.Can.J.Chem.Eng.,1966,44:130-136
  • 5Jepsen J C.Mass transfer in two-phase flow in horizontal pipelines.AIChEJ.,1970,16 (5):705-711
  • 6Shilimkan R V,Stepanek J B.Effect of tube size on liquid side mass transfer in co-current gas-liquid upward flow.Chem.Eng.Sci.,1977,32 (11):1397-1400
  • 7Charpentier J C.Mass-transfer rates in gas-liquid absorbers and reactors.Adv.Chem.Eng.,1981,11:1-133
  • 8Kies F K,Benadda B,Otterbein M.Experimental study on mass transfer of a co-current gas-liquid contactor performing under high gas velocities.Chem.Eng.Proc.,2004,43 (11):1389-1395
  • 9Herskowits D,Herskowits V,Stephan K,Tamir A.Characterization of a two-phase impinging jet absorber (Ⅰ):Physical absorption of CO2 in water.Chem.Eng.Sci.,1988,43 (10):2773-2780
  • 10Dlusa E,Wronski S,Huiacz R.Mass transfer in gasliquid Couette-Taylor flow reactor.Chem.Eng.Sci.,2001,56 (3):1131-1136

共引文献160

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部