期刊文献+

无合成并行绘制算法中的自适应屏幕分割策略 被引量:2

Adaptive Partition Strategy on Screen Space in Compositeless Algorithm
原文传递
导出
摘要 多GPU无合成绘制算法采用混合sort-first与sort-last的并行绘制模式,将绘制任务划分为多个子任务集合进行并行绘制并异步合成显示。原方法中对屏幕的分割方式过于平凡,未明确提出一种高效的屏幕分割策略,从无合成算法本身特性出发,提出一种自适应屏幕划分策略,该算法根据GPU数目及绘制分辨率参数,启发式计算屏幕初始划分方式,再采用统计性能反馈的方式动态选择最佳屏幕划分方式,较原有方法更易于实现子屏幕任务的负载平衡,实验表明,算法在带来很少额外计算开销的同时,能够有效平衡并行绘制任务负载,进一步发挥多GPU无合成并行绘制系统的绘制效率。 The task partition strategy of compositeless parallel rendering algorithm is based on simple hybrid sort-last and sort first rendering mode. This strategy is too ordinary to exploit the efficiency of compositeless method. The characters of compositeless method were analyzed, and an adaptive task partition strategy in screen-order was proposed. The initial tile styles were computed heuristically according to thread numbers and valid screen, then the rendering frame rates were read back dynamically and the tile layout was tuned up adaptively. Using this feed back method, the optimal tile layout could be detected quickly while the associated overhead could be ignored. The experiment shows that combined with the adaptive algorithm, the compositeless method could achieve much higher performance than ever.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第1期99-103,共5页 Journal of System Simulation
基金 国家"973"项目(2009CB723803) 国家自然科学基金(61170157)
关键词 并行绘制 无合成绘制系统 自适应划分 多GPU系统 parallel rendering compositeless algorithm adaptive partition multi-GPU
  • 相关文献

参考文献14

  • 1S Molnar, M Cox, D Ellsworth, H Fuchs. A Sorting Classification of Parallel Rendering [J]. IEEE Computer Graphics and Algorithms (S0272-1716), 1994, 14(4): 23-32.
  • 2Laurent Moll, Alan Heirich, Mark Shand. Sepia: Scalable3D eompositing using PCI pamette [C]// Proceedings IEEE Symposium on Field Programmable Custom Computing Machines, 1999. USA: IEEE, 1999: 146.
  • 3Muraki S, Ogata M, Ma K-L, et aL Next-generation visual supercompufing using PC clusters with volume graphics hardware devices [C]// Proceedings ACM/IEEE Conference on Super-computing, 2001. USA: IEEE, 2001: 51-51.
  • 4Stoll G, Eldridge M, Patterson D, et al. Lightning-2: A high-performance display subsystem for PC clusters [C]// Proceedings ACM SIGGRAPH, 2001. USA: ACM, 2001: 141-148.
  • 5Kwan-Liu Ma, Jame S Painter, Charles D Hansen, et al. Parallel Volume Rendering Using Binary-Swap Compositing [J]. Computer Graphics and Applications (S0272-1716), 1994, 14(4): 59-68.
  • 6S Eilemann, R Pajarola. Direct Send Compositing for Parallel Sort- Last Rendering [C]// Proceeding SIGGRAPH Asia '08 ACM SIGGRAPH ASIA 2008 courses. New York, NY, USA: ACM, 2008: 29-36.
  • 7Hongfeng Yu, Chaoli Wang, Kwan-Liu Ma. Massively Parallel Volume Rendering Using 2-3 Swap Image Compositing. High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. Piscataway, NJ, USA: IEEE Press, 2008: 1-11.
  • 8Rudrajit Samanta, Thomas Funkhouser, Kai Li, et al. Hybrid Sort-First and Sort-Last Parallel Rendering with a Cluster of PCs. [C]// Proceedings of the ACM SIGGRAPH/EUROGR- APHICS workshop on Graphics hardware, 2000. USA: ACM, 2000: 97-108.
  • 9Moerschell Adam, Owens John D. Distributed texture memory in a multi-GPU environment [C]// Proceedings of the SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2006. USA: ACM, 2006:31-38.
  • 10Praveen Bhaniramka, Philippe C D Robert, Stefan Eilemann. OpenGL Multipipe SDK: A Toolkit for Scalable Parallel Rendering [C]// IEEE Visualization, 2005. Minneapolis, MN, USA: IEEE Computer Society, 2005:119-126.

同被引文献19

  • 1余粉香,王光霞,万刚.大数据量遥感影像的快速调度与显示[J].海洋测绘,2006,26(2):27-30. 被引量:24
  • 2彭敏峰.并行绘制系统体系结构关键技术研究[D].长沙:国防科技大学,2006.
  • 3R SAMANTA, T FUNKH()USER, KAI LI, et al. Hy- brid Sort-First and Sort-I.ast Parallel Rendering with a Cluster of PCs. [C]//Proeeedings of the ACM SIG- GRAPH/EUROGR-APHICS workshop on Graphics hardware, 2000. USA: ACM, 2000.97-108.
  • 4罗丹.基于WCF的遗留系统并行构架的设计与实现[D].杭州:浙江大学,2011.
  • 5J I.()WY. Programming WCF Services[M]. 0' Reilly- Media, Inc. , 2007.
  • 6IS KLEIN. Professional WCF Progralnllling[M]. Wileyln-dia, Inc.,2009.
  • 7RUI XIN YANG. Value range queries on earth science data via histogram clustering [M]. Lecture Notes In Computer Science, 1999.
  • 8Stephens A, Boulos S, Bigler J,et al. An application ofscalable massive model interaction using shared memorysystems [C]// Proceedings of the EurographicsSymposium on Parallel Graphics and Visualization.Aire-la-Ville, Switzerland: Eurographics AssociationPress, 2006: 19-26.
  • 9Tian Fenglin,Hua Wei, Dong Zilong, et al. Adaptivevoxels: interactive rendering of massive 3D models [J].The Visual Computer(SO 178-2789), 2010, 26(6): 409-419.
  • 10Peng C and Cao Y. GPU-based streaming for parallellevel of detail on massive model rendering [D]. Virginia,USA: Virginia Tech. Computer Science, 2011.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部