期刊文献+

基于免疫粒子群算法的非合作博弈Nash均衡问题求解 被引量:32

Solving Nash equilibrium for N-persons' non-cooperative game based on immune particle swarm algorithm
在线阅读 下载PDF
导出
摘要 针对N人非合作博弈Nash均衡求解问题,将免疫算法中抗体浓度抑制机制和免疫记忆功能引入基本粒子群算法,提出了一种求解博弈问题Nash均衡的免疫粒子群算法。该算法通过抗体浓度抑制机制和免疫记忆功能来保持种群的多样性,不仅保持了粒子群算法简单、易于实现的特点,而且增强了粒子群算法的全局寻优能力,加快了算法的速度。实验表明,提出的算法具有较好的性能,优于免疫算法和基本粒子群算法。 This paper involved the antibody concentration inhibition mechanism and immune memory function of immune algorithm into the original swarm algorithm,and proposed an immune particle swarm algorithm for solving Nash equilibrium of N-persons' non-cooperative game.The proposed algorithm had not only the properties of the original swarm algorithm,but also improved the abilities of seeking the global optimization result and evolution speed.The computer simulation results demonstrate that the proposed algorithm is effective,and it is superior to the immune algorithm and original swarm algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2012年第1期28-31,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(70661001) 贵州大学青年基金资助项目(2010021)
关键词 免疫算法 粒子群算法 非合作博弈 纳什均衡 immune algorithm particle swarm algorithm non-cooperative game Nash equilibrium
  • 相关文献

参考文献20

  • 1NASH J. Noncooperative games [J]. Annals of Mathematics, 1951,54(2) : 286-295.
  • 2LEMKE C, HOWSON J. Equilibrium points of bimatrix games [J]. Journal of Society for Industrial and Applied Mathematics, 1964,12(2):413-423.
  • 3GOVINDAN S, WILSON R. A global Newton method for computing Nash equilibria [J]. Journal of Economic Theory, 2003, 110 ( 1 ) :65-86.
  • 4GOVINDAN S, WILSON R. Computing Nash equilibria by iterated polymatrix approximation [ J ]. Journal of Economic Dynamics and Control, 2004,28 ( 7 ) : 1229-1241.
  • 5YUAN Ya-xiang. A trust region algorithm for Nash equilibria problems [ J]. Pacific Journal of Optimization, 2011,7( 1 ) :1:25-138.
  • 6ZHANG Jian-zhong, QU Biao, XIU Nai-hua. Some projection-like methods for the generalized Nash equilibria[J]. Computational Optimization and Applications,2010,45( 1 ) :89-109.
  • 7HERINGS P J J, PEETERS R. Homotopy methods to compute equilibria in game theory [ J]. Economic Theory,2010,42 ( 1 ) : 119- 156.
  • 8HERINGS P J J, PEETERS R. Homotopy methods to compute equilibria in game theory [J]. Economic Theory,2010,42 ( 1 ) : 119- 156.
  • 9SUREKA A, WURMAN P. Using tabu best response search to find pure strategy Nash equilibria in normal form games [ C ]//Proc of AAMASO-05. 2005 : 1023-1029.
  • 10PAVLIDIS N, PARSOPOULOS K, VRAHATIS M. Computing Nash equilibria through computational intelligence methods [ J ]. Journal of Computational and Applied Mathematics, 2005,175 (1):113-136.

二级参考文献53

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2张荣沂.一种新的集群优化方法——粒子群优化算法[J].黑龙江工程学院学报,2004,18(4):34-36. 被引量:18
  • 3余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 4洪俊田,赵东方.运用Lingo软件包求解双矩阵对策的方法[J].华中师范大学学报(自然科学版),2006,40(3):325-330. 被引量:4
  • 5Pavlidis N G,Parsopoulos K E,Vrahatis M N.Computing Nash Equilibria Through Computational Intelligence Methods[J].Journal of Computational andApplied Mathematics,2005,175(1):113-136.
  • 6Parsopouios K E,Vrahatis M N.On the Computation of All Global Minimizers Through Particle Swarm Optimization[J].IEEE Transactions On Evolutionary Computation,2004,8(3):211-224.
  • 7Dofigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 8Dreo J,Siarry P.An Ant Colony Algorithm Aimed at Dynamic Continuous Optimization[J].Applied Mathematics and Computation,2006,181(1):457-467.
  • 9Krzysztof S,Dongo M.Ant Colony Optimization for Continuous Domains[J].European Journal of Operational Research,2006,185(3):1155-1173.
  • 10Baskan O,Haldenbilen S,Ceylan H.A New Solution Algorithm for Improving Performance of Ant Colony Optimization[J].Applied Mathematics and Computation,2009,211(1):75-84.

共引文献244

同被引文献233

引证文献32

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部