期刊文献+

基于三轴加速度传感器的手势识别 被引量:42

Gesture Recognition Based on Three-axial Accelerometer
在线阅读 下载PDF
导出
摘要 针对手势交互中手势信号的相似性和不稳定性,设计实现一种基于三轴加速度传感器的手势识别方案。采用MMA7260加速度传感器采集主手腕的手势动作信号,根据手势加速度信号的特点,进行手势动作数据窗口的自动检测、信号去噪和重采样等预处理,通过提取手势动作的关键特征,构造离散隐马尔可夫模型,实现手势动作识别。实验结果证明该方案的识别精度较高。 Aiming at similarity and instability of gesture activity signal in gesture interaction, a gesture recognition scheme based on three-axial accelerometer is presented. It utilizes a MMA7260 accelerometer to capture the acceleration signal of dominant wrist. An activity detection algorithm is used to auto determine the data stream which containing interesting motion according to the features of gesture activity signal. After denoising and resampling the acceleration data streams, gesture features are extracted, and Discrete Hidden Markov Model(DHMM) is built for gesture recognition. Experimental results demonstrate the effectiveness of the scheme.
作者 刘蓉 刘明
出处 《计算机工程》 CAS CSCD 北大核心 2011年第24期141-143,共3页 Computer Engineering
基金 华中师范大学中央高校基本科研业务费基金资助项目(CCNU10A02008) 教育部人文社会科学研究计划基金资助项目(10YJA870026)
关键词 加速度传感器 手势识别 人机交互 信号处理 离散隐马尔可夫模型 accelerometer gesture recognition human-computer interaction signal processing Discrete Hidden Markov ModeI(DHMM)
  • 相关文献

参考文献8

  • 1Hoffman F, Heyer P, Hommel G. Velocity Profile-based Recognition of Dynamic Gestures with Discrete Hidden Markov Models[C] //Proc. of 1997 Gesture Workshop. Gif-sur-Yvette, France: [s. n.] , 1997: 81-95.
  • 2Hinckley K, Pierce J, Sinclair M, et al. Sensing Techniques for Mobile Interaction[C] //Proc. of Conference on User Interface Software and Technology. San Diego, California, USA: [s. n.] , 2000: 91-100.
  • 3Chambers G S, Venkatesh S, West G, et al. Segmentation of Intentional Human Gestures for Sports Video Annotation[C] //Proc. of the 10th International Multimedia Modeling Conference. Brisbane, Australia: [s. n.] , 2004: 124-129.
  • 4Mantyjarvi J, Juha K, Panu K, et al. Enabling Fast and Effortless Customisation in Accelerometer-based Gesture Interaction[C] // Proc. of the 3rd International Conference on Mobile and Ubiquitous Media. Maryland, USA: [s. n.] , 2004: 25-31.
  • 5吴江琴,高文.基于DGMM的中国手语识别系统[J].计算机研究与发展,2000,37(5):556-558. 被引量:13
  • 6Benbasat A Y, Paradiso J A. An Inertial Measurement Framework for Gesture Recognition and Applications[C] //Proc. of the International Gesture Workshop on Gesture and Sign Languages in Human-computer Interaction. London, UK: [s. n.] , 2001: 9-20.
  • 7Junker H. Gesture Spotting with Body-worn Inertial Sensors to Detect User Activities[J]. Pattern Recognition, 2008, 41(6): 2010- 2024.
  • 8Duda R O, Hart P E, Stork D G. 模式分类[M]. 李宏东, 姚天翔,译. 北京: 机械工业出版社, 2006.

二级参考文献7

  • 11,中国聋人协会. 中国手语. 北京:北京华夏出版社,1991
  • 22,Liang R, Ouhyoung M. A sign language recognition system using hidden Markov model and context sensitive search. In: Proc of the ACM Symposium on VR Software and Technology. Hong Kong, 1996. 59~66
  • 33,Starner T, Pentland A. Real-time American sign language recognition from video using hidden Markov models. MIT Media Lab Perceptual Computing Section, Tech Rep: TR-375, 1996
  • 44,Vogler C, Metaxas D. ASL recognition based on a coupling between HMMs and 3D motion analysis. In: Int'l Conf on Computer Vision. India, 1998. 363~369
  • 55,Fels S S, Hinton G E. Glove-talk: A neural network interface between a data-glove and a speech synthesizer. IEEE Trans on Neural Networks, 1993, 4(1): 2~8
  • 66,Rabiner L R, Juang B H. An introduction to hidden Markov models. IEEE ASSP Magazine, 1986, 3(1): 4~16
  • 77,Grobel K, Assam M. Isolated sign language recognition using hidden Markov models. In: Proc of the IEEE Int'l Conf on Systems, Man and Cybernetics. Orlando, FL, 1997. 162~167

共引文献12

同被引文献287

引证文献42

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部