期刊文献+

基于控制轴向速度变化的1.5级涡轮压力可控涡设计 被引量:12

Pressure Controlled Vortex Design of 1.5-stage Turbine Based on the Method of Controlling Axial Velocity Variation
原文传递
导出
摘要 考虑了可控涡级内流面弯曲,通过寻找可控涡设计合适的轴向速度分布,采用给定压力分布求解环量分布的可控涡设计方法,首先对1.5级轴流亚声速试验涡轮进行了设计;然后进行参数化造型;最后运用三维黏性数值模拟,对所设计的1.5级涡轮进行了数值研究。数值结果表明:采用可控涡设计方法减缓了叶栅通道内的横向压力梯度;遏制了低能流体向吸力面堆积;消除了动叶栅根部沿径向方向的负压力梯度;降低了下通道涡涡核能量。与自由涡设计相比,可控涡设计涡轮效率提高了0.67%,功率提高了3.47%。研究还表明,采用这种压力可控涡设计方法,不仅可以提高动静叶匹配,还可以避免级后气流参数不均匀,最大程度地减少叶栅出口掺混损失。 Considering distortions of the stream surface and through the search for suitable axial velocity distributions in controlled vortex design stage,a 1.5-stage subsonic axial flow turbine is designed by controlled vortex design method with the given pressure distributions to resolve circulation distributions.The turbine blades are then obtained through parameterization design and are numerically studied through 3D viscous simulation finally.The results show that this controlled vortex design method relieves the transverse pressure gradient in cascade passage to keep the low-energy fluid from moving towards the blade suction.Also,it removes the negative pressure gradient along radial direction which could reduce the passage vortex core energy.Compared with free vortex design,the controlled vortex design turbine efficiency is increased by 0.67%,and the power,3.47%.The results also indicate that the pressure controlled vortex design method not only enhances the stage match but also prevents the blade outlet flow parameters from non-uniform to reduce mixing losses to the greatest extent.
出处 《航空学报》 EI CAS CSCD 北大核心 2011年第12期2182-2193,共12页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(50776021) 国家教育部博士点专项基金资助(20092304110004)~~
关键词 涡轮 涡轮设计 叶片造型 可控涡设计 压力可控涡 数值模拟 turbine turbine design blade modeling controlled vortex design pressure controlled vortex numerical simulation
  • 相关文献

参考文献15

二级参考文献24

  • 1熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计[J].航空学报,2006,27(3):399-402. 被引量:56
  • 2Zweifel O. The spacing of turbo-machine blading, especially with large angular deflection[J]. Brown Boveri Rev, 1945,32(12) :436-444.
  • 3Stewart W L, Glassman A J. Turbine design and application:chapter 4, blade design[R]. NASA SP-290, 1973.
  • 4Curtis E M, Hodson H P, Banieghbal M R, et al. Development of blade profiles for low pressure turbine applications[R]. ASME 96-GT-358, 1996.
  • 5Segawa K, Shikano Y, Tsubouehi K, et al. Development of highly loaded rotating blade for steam turbines[A]. Proe International Joint Power Generation Conference PWR [C].ASME, 1999, 34(2):125-131.
  • 6Segawa K, Shikano Y, Tsubouchi K, et al. Performance verification of a highly loaded steam turbine blade [R].JPGC2001/PWR-19125. 2001.
  • 7Hah C. Aerodynamic lean and sweep for improvements in compressor performances[R]. Von Karman Institute for Fluid Dynamics, Lecture Series 1999-02, Turbomachinery Blade Design Systems, 1999.
  • 8Breugelmans F A E, Carels Y, Demuth M. Influence of dihedral on the secondary flow in a two-dimensional compressor cascade[J]. ASME Journal of Engineering for Gas Turbine and Power, 1984,106:578-584.
  • 9Weingold H D, Neubert R J, Behlke R F, et al. Reduction of compressor stator endwall losses through the use of bowed stators[R]. ASME Paper 95-GT-380, 1995.
  • 10Tweedt D L, Okiishi T H, Hathaway M D. Stator endwall leading-edge sweep and hub shroud influence on compressor performance[J]. ASME Journal of Turbomachinery, 1986,108:224-232.

共引文献33

同被引文献115

引证文献12

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部