期刊文献+

基于改进混合蛙跳算法的网格任务调度策略 被引量:6

Grid Task Schedule Strategy Based on Improved Shuffled Frog Leaping Algorithm
在线阅读 下载PDF
导出
摘要 针对网格任务调度问题,提出一种基于改进混合蛙跳算法的网格任务调度策略。通过引入遗传算子增加对局部极值的扰动,以避免陷入局部最优,同时借鉴粒子群优化算法中粒子飞行经验,对青蛙移动策略进行优化。实验结果表明,该策略高效合理,能够缩减执行任务的时间跨度,并提高最优解的质量。 This paper proposes an improved Shuffled Frog LeapingAlgorithm(SFLA) for grid task schedule.The algorithm is based on traditional SFLA.It introduces the genetic operators to increase relative extremum disturbance to avoid falling into a local optimum,and the frog leaping strategy is optimized by learn from the particle flying experience of Particle Swarm Optimization(PSO) algorithm.Experimental results prove the strategy has better performance.It can be faster to get a high-quality optimal solution.
作者 欧阳 孙元姝
出处 《计算机工程》 CAS CSCD 北大核心 2011年第21期146-148,共3页 Computer Engineering
关键词 网格 任务调度 混合蛙跳算法 遗传算法 粒子群优化算法 grid task schedule Shuffled Frog LeapingAlgorithm(SFLA) GeneticAlgorithm(GA) Particle Swarm Optimization(PSO) algorithm
  • 相关文献

参考文献4

二级参考文献27

  • 1肖源杰,倪富健,都敬丽.基于HDM-4的路面养护决策仿真-优化框架研究[J].交通与计算机,2007,25(3):82-86. 被引量:2
  • 2赵知劲,郑仕链,尚俊娜.认知无线电技术[M].北京:科学出版社,2008.
  • 3Peng Chunyi, Zheng Haitao, Zhao B Y. Utilization and Fairness in Spectrum Assignment for Opportunistic Spectrum Access[J]. ACM Mobile Networks and Applications, 2006, 11 (4): 555-576.
  • 4Rahimi-Vahed A, Mirzaei A H. Solving a Bi-criteria Permutation Flow-shop Problem Using Shuffled Frog-leaping Algorithm[J]. Soft Computing, 2008, 12(5): 435-452.
  • 5Eusuff M, Lansey K, Pasha E Shuffled Frog-leaping Algorithm: A Memetic Meta-heuristic for Discrete Optimization[J]. Engineering Optimization, 2006, 38(2): 129-154.
  • 6Ullman J.NP-Complete Scheduling Problems[J]. Journal of Compu-ter and Syst. Sciences, 1975,10: 384-393.
  • 7Andronikos T, Koziris N.Optimal Scheduling for UET-UCT Grids Into Fixed Number of Processors[C]. Parallel and Distributed Processing 2000 Proceedings, 8th Euromicro Workshop on, 2000.237-243.
  • 8Wensheng Yao, et al. Genetic Scheduling on Minimal Processing Elements in the Grid[M]. Springer-Verlag Heidelberg, 2002.
  • 9Di Martino V, et al. Scheduling in A Grid Computing Environment Using Genetic Algorithms[C]. Parallel and Distributed Processing Symposium, Proceedings International IPDPS, 2002.235-239.
  • 10Di Martino V. Sub Optimal Scheduling in A Grid Using Genetic Algorithms[C].Parallel and Distributed Processing Symposium, 2003.148-154.

共引文献109

同被引文献51

  • 1吴德本,姚健,邓志武.云计算综述[J].有线电视技术,2012(3):27-31. 被引量:6
  • 2陈运安.负载均衡技术的实现以及策略[J].电信技术,2012(S1):64-66. 被引量:2
  • 3单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:226
  • 4Eusuff M M,Lansey K E.Optimization of Water DistributionNetwork Design Using the Shuffled Frog Leaping Algorithm[J].Journal of Water Sources Planning and Management,2003,129(3):210-225.
  • 5Amiri B,Fathian M,Maroosi A.Application of Shuffled Frog-leaping Algorithm on Clustering[J].The International Journal ofAdvanced Manufacturing Technology,2009,45(1/2):199-209.
  • 6Tizhoosh H R.Opposition-based Learning:A New Scheme forMachine Intelligence[C]//Proc.of International Conference onComputational Intelligence.Vienna,Austria:[s.n.],2005:695-701.
  • 7Tizhoosh H R.Opposition-based Reinforcement Learning[J].Journal of Advanced Computational Intelligence and IntelligentInformatics,2006,10(3):578-585.
  • 8Elbeltagi E,Hegazy T,Grierson D.Comparison Among FiveEvolutionary-based Optimization Algorithms[J].AdvancedEngineering Informatics,2005,19(1):43-53.
  • 9Eusuff M, Lansey K, Pasha F.Shuffied frog-leaping algorithm: a memetic meta-heuristic for discrete optimization[J].Engi- neering Optimization, 2006,38 (2) : 129-154.
  • 10Luo Xue-hui, Yang Ye, Li Xia.Solving TSP with shuffled frog-leaping algorithm[C]//8th International Conference on Intelligent Systems Design and Applications, 2008: 228-232.

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部