期刊文献+

航空发动机的多参数快速故障诊断模型 被引量:2

Multi-parameter fast fault diagnosis model of aeroengine
在线阅读 下载PDF
导出
摘要 为了提高诊断效率,降低故障诊断对人的过分依赖,建立了一个航空发动机故障快速诊断模型。该模型结合粗糙集和灰色理论各自特点,利用粗糙集去除特征信息中的冗余信息;再通过多参数灰色模型对约简后的信息进行快速准确的预测。仿真对比表明,该模型在不降低预测精度的情况下能显著减少计算时间,有效提高故障预测的快速性和实时性。 For the sake of improving efficiency of diagnosis and lowering the dependency of manual labor, this paper proposed a fast fault diagnosis model of aeroengine. The model combined characteristics of rough sets and grey theory. Redundant information was eliminated from feature information by rough sets, and then the reduction information was quickly and accurately predicted by multi-parameter grey model. The simulation results show preliminarily that the model saves the computing time greatly and can effectively meet the requirements of fast and real-time fault prediction while precision is not reduced.
出处 《计算机应用研究》 CSCD 北大核心 2011年第12期4564-4566,4575,共4页 Application Research of Computers
基金 航空科学基金资助项目(2010ZD53039) 陕西省自然科学基金资助项目(2010HQ8005)
关键词 粗糙集 GM(1 1)模型 多参数 故障诊断 航空发动机 rough set GM( 1,1 ) model multi-parameter faults diagnosis aeroengine
  • 相关文献

参考文献15

  • 1柳爱利,施建洪,寇昆湖.诊断反舰导弹故障模式的故障诊断法运用[J].海军航空工程学院学报,2008,23(2):231-233. 被引量:3
  • 2XU Dong,WU Mei,AN Jin-wen. Design of an expert system based on neural network ensembles for missile fault diagnosis [ C]//Proc of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing. 2003:903-908.
  • 3梁瑞胜,孙有田,周希亚.小波包变换和神经网络的某型导弹故障诊断方法研究[J].海军航空工程学院学报,2008,23(2):217-220. 被引量:9
  • 4WU Jian-da, LIU Chiu-hong. Investigation of engine fault diagnosis u- sing discrete wavelet transform and neural network [ J ]. Expert Sys- tems with Applications ,2008,35 ( 3 ) : 1200-1213.
  • 5LIU Si-feng, LIN Y. Grey information theory and practical applications [ M ]. London : Springer-Verlag, 2006.
  • 6梅检民,周斌,司爱威,张威,肖云魁.基于变精度粗糙集理论提取发动机振动故障特征[J].军事交通学院学报,2009,11(3):43-47. 被引量:4
  • 7FRABcIS E,SHEN Li-xiang. Fault diagnosis based on rough set theo- ry[ J]. Engineering Applications of Artificial InteUigence,2003,16 (I) :39-43.
  • 8SWINIARSKI R W, SKOWRON A. Rough set methods in feature se- lection and recognition [ J ]. Pattern Recognition Letters, 2003,24 (6) :833-849.
  • 9张喜斌,成立,余江民.基于一种新型粗糙集神经网络的故障诊断[J].计算机应用研究,2006,23(5):156-158. 被引量:5
  • 10LI Guo-dong, WANG Chen-hong, MASUDA S, et al. A research on short term load forecasting problem applying improved grey dynamic model[ J]. International Journal of Electrical Power & Energy Systems ,2011,33 (4) :809-816.

二级参考文献31

共引文献395

同被引文献13

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部