期刊文献+

解决LDPC码准线性编码复杂度的贪婪置换算法

Greedy Permutation Algorithm for Almost Linear Encoding of LDPC Codes
在线阅读 下载PDF
导出
摘要 LDPC码被认为是目前比较好的一种信道编码,但编码的高复杂度一直困扰LDPC码的应用。针对这一问题,提出一种新的编码方法——贪婪置换算法。该方法是基于近似下三角阵(ALT)准线性编码的思想,将一个稀疏校验矩阵高效地转化为一个近似下三角阵。文章具体给出了这种方法和运算步骤,实现了ALT的准线性编码,使得对于任何一种LDPC码,可以实现O(n+g2)以内的编码低复杂度。文章对若干正则和非正则LDPC码进行了编码方案的模拟,得出复杂度,并和目前国际上最先进的编码方法加以比较,体现出了本方法在复杂度上的优越性。 LDPC coding is considered as one of the most promising channel coding;however the complexity of this encoding inhibits its further development and application.This paper deals with this problem,proposing new encoding method: the greedy permutation algorithm.Following the idea of approximate lower matrix(ALT) encoding,the greedy permutation algorithm can efficiently transform a sparse LDPC parity check matrix into an ALT.This paper studies this method in depth and discusses its step-by-step process,with ALT encoding complexity examined.For any LDPC codes,this method can keep encoding complexity within O(n+g2).The encoding method is simulated on several classes of regular and irregular LDPC codes.The encoding complexity is compared with other popular methods' complexity,which reflects the superiority of this method.
作者 齐行行
出处 《信息工程大学学报》 2011年第5期578-583,共6页 Journal of Information Engineering University
关键词 信道编码 LDPC码 准线性编码 近似下三角阵 贪婪置换算法 channel encoding LDPC codes almost linear encoding approximate lower matrix(ALT) greedy permutation algorithm
  • 相关文献

参考文献11

  • 1Gallager R G. Low-density parity-check codes [ J ]. IRE Trans. Info. Theory, 1962,2F8:21-28.
  • 2Richardson T J, Shokrollahi M A, Urbanke R L. Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes [ J ]. IEEE Transactions in Information Theory, 2001,47 ( 2 ) : 629-637.
  • 3Lin S, Costello D J. Error Control coding[ M]. Pearson Prentice Hall, 2004.
  • 4Tanner R M. A recursive approach to low complexity codes[ J]. IEEE Trans. Inform. Theory, 1981,IT-27 (5) :533-547.
  • 5Luby M, Mitzenmacher M, Shokrollahi A,et al. Practical erasure resilient codes[ C]// Proc. 29th Annu. ACM Syno. Theory of Computing ( STOC). 1997 : 150-159.
  • 6Tanner R M, Sridhara D, Sridharan A, et al. LDPC block and convolutional codes based on circulant matrices[ J]. IEEE Transactions on Information Theory, 2004,50 ( 12 ) : 2966-2984.
  • 7Di C, Proietti D, Teletar I E. Finite length analysis of low-density parity-check codes on the binary erasure channel[ J ]. IEEE Trans. Inform. Theory,2002,48 : 1570-1579.
  • 8Richardson T, Urbanke R. Efficient encoding of low density parity check codes[ J]. IEEE Trans. Inform. Theory,2001 ,47: 638 -656.
  • 9Fossorier M P. Quasicyclic low-density parity-check codes from circulant permutation matrices[ J]. IEEE Trans. On Informa- tion Theory ,2004,50 ( 8 ) : 1788-1793.
  • 10Hanghang Qi, Goertz N. Almost linear encoding of LDPC codes : a new algorithm and its performance [ C ]//9th International Symposium on Communication Theory and Applications. 2007:21-26.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部