期刊文献+

支持向量机法在钢结构焊接质量安全评价中的应用

Application of safety evaluation of the welding quality of steel structure based on the vector machine method
在线阅读 下载PDF
导出
摘要 目前我国对钢结构焊接质量安全鉴定方法主要依赖于经验判断,针对这个问题,本文研究借助现代检测仪器和测试技术,综合考虑现代统计学理论和凸二次规划理论,提出基于支持向量机的钢结构焊接质量安全评价方法。运用优秀的机器学习算法,对钢结构焊接质量进行全面分析,并作出钢结构焊接质量与安全的综合评价,使钢结构焊接质量与安全评价更加科学和合理,以期对类似的研究和应用提供参照。
作者 张庆红
出处 《现代焊接》 2011年第11期27-29,共3页 MODERN WELDING
  • 相关文献

参考文献3

二级参考文献20

  • 1V Vapnik.The Nature of Statistical Learning Theory[M].New York: Springer Verlag, 1995.
  • 2O Chapelle,V Vapnik et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002 ;46 : 131-159.
  • 3S Keerthi,Chih-Jen Lin.Asymptotic Behavior of Support Vector Machines with Gaussian Kernel[J].Neural Computation.
  • 4V Vapnik,O Chapelle.Bounds on error expectation for support vector machine[J].Neural Computation,2000; 12 : 2013-2036.
  • 5Cortes C, Vapnik V. Support vector networks. Machine Learning,1995, 20(3): 273-293.
  • 6Flach P A. On the state of the art in machine learning: A personal review. Artificial Intelligence, 2001, 131 ( 1 ): 199-222.
  • 7Sánchez A V D. Advanced support vector machines and kernel methods. Neurocomputing, 2003, 55(1): 5-20.
  • 8Chaucharda F, Cogdillb R, Rousselc S, et al. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes. Chemom Intell Lab Syst, 2004, 71(2): 141-150.
  • 9Hua S, Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure:support vector machine approach. J Mol Biol, 2001, 308(2): 397-4.07.
  • 10Burbidge R, Trotter M, Buxton B, et al. Drug design by machine learning: support vector machines for pharmaceutical data analysis.Computers and Chemistry, 2001,26(1 ): 5-14.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部