期刊文献+

多段翼型局部主动变形流动控制的非定常数值模拟 被引量:5

Numerical simulation of unsteady turbulence flow over multi-element airfoil with local active morphing for separation flow controlling
在线阅读 下载PDF
导出
摘要 对30P30N三段翼型失速攻角附近的分离流动进行了数值模拟研究。为了抑制大攻角时背风区的流动分离,在主翼段上表面引入了行波壁变形模型和抛物型局部主动振动模型,利用作者以往发展的动态混合网格技术和相应的非定常计算方法,对变形过程中的非定常分离流动进行了数值模拟,分析了各种变形参数对流动分离的影响。计算结果表明,在适当的条件下,局部主动变形能够抑制翼型背风区的分离,由此可以起到增升减阻的作用,改善翼型的气动性能。 The subsonic turbulence flow over 30P30N three-element airfoil is simulated numerically at high angle of attack.In order to control the flow separation in the leeward in the cases of high angle of attack,a traveling wave model and an active oscillating model are added to the upper surface of the airfoil.Then the unsteady flows over the morphing airfoil are simulated with an unsteady flow solver based on dynamic hybrid grids,which was developed in previous work.The numerical results show that,in some cases,the flow separation in the leeward will be depressed and even completely eliminated so that the lift coefficient can be increased and the drag coefficient can be cut down to improve the aerodynamic performance of the airfoil at high angle of attack.
出处 《空气动力学学报》 EI CSCD 北大核心 2011年第5期607-612,639,共7页 Acta Aerodynamica Sinica
基金 国家自然科学基金(91016001) 国家重点基础研究发展计划(973)项目(2009CB723802)
关键词 动态混合网格 非定常流 主动变形 多段翼型 流动控制 dynamic hybrid mesh unsteady flow active morphing multi-element airfoils flow controlling
  • 相关文献

参考文献11

  • 1MEHMET S, LAKSHMI N S. Dynamic stall alleviation using a deformable leading edge concept-anumerical study [ R ]. AIAA paper 2000-0520.
  • 2MODI V J. On the moving surface boundary-layer control [R]. AIAA paper 2000-2238.
  • 3RAZVAN F, BRIAN E W. Parametric analysis of directed- synthetic jets for improved dynamic-stall performance [ R ]. AIAA paper 2003-216.
  • 4MEHMET S, LAKSHMI N S, CHANDRASEKHARA M S, TUNG C. Dynamic stall alleviation using a deformable lead- ing edge concept-a numerical study[R]. AIAA paper 2000- 0520.
  • 5LIAN Y H, WEI S, RAPHAEL H. Shape optimization of a membrane wing for micro air vehicles [ A ]. 41st Aerospace Sciences Meeting and Exhibit [ C ]. January, 2003.
  • 6吴锤结,解妍琼,吴介一.“流体滚动轴承”效应及其在流动控制中的应用[A].全国第九届分离流、旋涡和流动控制会议文集[C].北京,2002.
  • 7倪云华,杨爱明,翁培奋.低雷诺数下微型飞行器主动变形翼非定常气动特性数值分析[A].全国流体力学青年讨论会论文集[C].四川绵阳,2005.
  • 8冉景洪,刘子强,白鹏.局部变形对低雷诺数流动中翼型气动力特性影响规律的研究[A].中国航空学会2006航空飞行器发展与空气动力学研究会[C].2006.
  • 9ZHANG L P, YANG Y J,ZHANG H.X. Numerical simulations of 3D inviscid/viscous flow fields on Cartesian/unstructured/prismatic hybrid grids[ A ]. Proceedings of the 4th Asian CFD Conference[ C]. Mianyang, China,2000.
  • 10张来平,段旭鹏,常兴华,王振亚,张涵信.基于Delaunay背景网格插值和局部网格重构的变形体动态混合网格生成技术[J].空气动力学学报,2009,27(1):32-40. 被引量:20

二级参考文献22

  • 1PERKINS D A, REED J I., HAVENS J E. Morphing wing structures for loitering air vehicles [R]. AIAA 2004-1888.
  • 2RAMRKAHYANI D S, LESIENTURE G A. Aircraft structural morphing using tendon actuated compliant cellular trusses[R]. AIAA 2004-1728.
  • 3SECANELL M, SULEMAN A, GAMBOA P. Design of a morphing airfoil for a light unmanned aerial vehicle using high-fidelity aerodynamic shape optimization[R]. AIAA 2005-1891.
  • 4LIU H, WASSERSUG R J, KAWACHI K A. The three- dimensional hydrodynamics of tadpole locomotion [J]. J. Exp. Biol., 1997, 200: 2807-2819.
  • 5WU J W, SUN M. Unsteady aerodynamics forces of a flapping wing[J]. J. Exp. Biol., 2004(207): 1413- 1427.
  • 6NAKAHASHI K, TOGASHI F. An intergrid-boundary definition method for overset unstructured grid approach[R]. AIAA-99 3304.
  • 7LOHNER R, SHAROY D, LUO H, et al. Overlapping unstructured grids[R]. AIAA-01-0439.
  • 8GRUBE B, CARSTENS V. Computational of unsteady transonic flow in harmonically oscillating turbine cascades taking into account viscous effects[J]. ASME Journal of Turbomachinery, 1998,120 ( 1 ) : 104-111.
  • 9SCHULZE S. Transonic aeroelatic simulation of a flexi ble wing section[A]. AGARD structures and Materials Panel workshop on Numerical Unsteady Aerodynamics and Aeroelastics Simulation[C]. AGARD R-822, Aalborg, Denmark,13-17 October 1997,10;1-10:20.
  • 10BATINA J T. Unsteady Euler airfoil using unstructured dynamic meshes[J]. AIAA Journal, 1990,28(8) : 1381- 1388.

共引文献20

同被引文献46

  • 1叶舟,赵海洋,高伟,李春.柔性翼型主动控制与气动特性分析[J].排灌机械工程学报,2013,31(10):884-887. 被引量:7
  • 2杜善义,张博明.飞行器结构智能化研究及其发展趋势[J].宇航学报,2007,28(4):773-778. 被引量:32
  • 3崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路[J].航空制造技术,2007,50(8):38-41. 被引量:51
  • 4韩介勤,等著,程代京,谢永慧译.燃气轮机传热和冷却技术[M].西安:西安交通大学出版社,2005.
  • 5Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Compu tational Physics, 2006, 211: 405-423.
  • 6Zhang LP, ChangX H, Duan X P, et al. A block LU- SGS implicit unsteady incompressible flow solver on hy-brid dynamic grids for 2D external bio-fluid simulations [J]. Computers & Fluids, 2009, 38(2): 290- 308.
  • 7Rendall T C S, Allen C B. Fluid-structure interpolation and mesh motion using radial basis functions[J], lnterna tional Journal for Numerical Methods in Engineering, 2008, 75(10):1519-1559.
  • 8Rendall T C S, Allen C B. Efficient mesh motion using ra dial basis functions with data reduction algorithms[J]. Journal of Computational Physics, 2009, 229 (7) : 6231- 6249.
  • 9Rendall T C S, Allen C B. Reduced surface point selection options for efficient mesh deformation using radial basis functions[J]. Journal of Computational Physics, 2010, 229(8) : 2810-2820.
  • 10SHU F, YOJI O, YOSHITAKA F, et al. Study on ad- vanced internal cooling technologies for the develop- ment of next-generation small-class aircraft engines[J]. Transactions of the ASME, Journal of Turboma- chinery, 132, pp 031019 - 1 - 10, 2010.

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部