期刊文献+

高阶间断有限元法的并行计算研究 被引量:13

Parallel computation of a high-order discontinuous Galerkin method on unstructured grids
在线阅读 下载PDF
导出
摘要 根据间断有限元法的数据结构特点,基于METIS网格分区技术,设计并行计算策略,在非结构网格上实现了并行高阶间断有限元法。控制方程的数值通量项使用Local Lax-Friedrichs(LLF)格式计算。设计了并行的牛顿-块高斯赛德尔法(Newton-Block GS)来加速收敛,提高迭代效率。并行性能分析表明,所设计的并行算法能够得到较好的加速比和并行效率,有效地节省计算时间,合理分配内存。这使得采用高阶间断有限元法计算更为复杂的问题成为可能。 Based on the METIS mesh partition technique,a parallel high-order Discontinuous Galerkin(DG) method is developed for the solution of the 2D Euler equations on unstructured grids.The developed parallel method is used to compute the compressible flows for test problems of different scales.The numerical flux of Euler equations is calculated by using Local Lax-Friedrichs(LLF) scheme;and a parallel Newton-Block GS method is devised to accelerate convergence.The numerical results obtained show that it has rapid convergence rate and solution of high accuracy.The performance analysis indicates that it has satisfying speedup and parallel efficiency.Overall,the parallel high-order DG method is proved to reduce computational time dramatically and allocate memory reasonably,which makes it promising to compute more complex problems.
出处 《空气动力学学报》 EI CSCD 北大核心 2011年第5期537-541,共5页 Acta Aerodynamica Sinica
基金 教育部博士点青年基金(20070287024)
关键词 并行计算 METIS 高阶间断有限元 EULER方程 Newton-Block GS parallel computation METIS high-order discontinuous Galerkin Euler equations Newton-Block GS
  • 相关文献

参考文献16

  • 1LIN S Y, CHIN Y S. Discontinuous Galerkin finite element method for Euler and Navier-Stokes equations [ J ]. AIAA Journal, 1993: 2016-2023.
  • 2BASSI F, RRBAY S. High-order accurate discontinuous finite element solution of the 2D Euler equations [ J]. Journal of Computational Physics, 1997, 138 ( 2 ) : 251-285.
  • 3RASETARINERA P, HUSSAINI M Y. An efficient implicit discontinuous spectral Galerkin method [ J ]. Journal of Computational Physics, 2001 : 718-738.
  • 4LESAINT P. Sur la resolution des systemes hyperboliques du premier order par des methods delements finis [ D ]. Unversite Paris 6, 1975.
  • 5LESAINT P, RAVIART P A. On a finite element method to solve the neutron transport equation [ M ].// C. de Boor. Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, 1974.
  • 6COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅱ: general framework [J]. Mathematics of Computation, 1989 : 52-411.
  • 7COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅲ: one dimensional systems [J]. Journal of Computational Physics, 1989 : 84-90.
  • 8COCKBUTRN B, HOU S, SHU C W. TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws Ⅳ: the multidimensional case [J]. Mathematics of Computation, 1990 : 45-581.
  • 9吕宏强,伍贻兆,周春华,田书玲.稀疏非结构网格上的亚声速流高精度数值模拟[J].航空学报,2009,30(2):200-204. 被引量:10
  • 10贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:16

二级参考文献34

  • 1贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:16
  • 2Lu H Q. High-order finite element solution of elastohydronamic lubrication problems[D]. Leeds,UK: University of Leeds, 2006.
  • 3Cockburn B, Kamiadakis G E, Shu C W. Discontinuous Galerkin methods: theory, computation and applications [M]. Berlin: Springer, 1999.
  • 4Bassi F, Rebay S. High-order accurate discontinuous finite element solution of the 2D Euler equations[J]. Journal of Computational Physics, 1997,138(2) :251-285.
  • 5Lu H Q, Berzins M, Goodyer C E, et al. High order discontinuous Galerkin method for elastohydrodynamic lubrication line contact problems[J]. Communications in Numerical Methods in Engineering, 2005,21(11):643-650.
  • 6Luo H, Baum J D, Lohner R. A P-multigrid discontinuous Galerkin method for the Euler equations on unstructure grids[J]. Journal of Computational Physics, 2006,211(2): 767-783.
  • 7Hartmann R. Adaptive finite element methods for the compressible Euler equations[D]. Heidelberg, Germany: University of Heidelberg, 2002.
  • 8Baker TJ.Mesh generation:Art or science? Progress in Aerospace Sciences,2005,41:29-63.
  • 9Hughes TJR,Brooks A.A Multidimensional Upwind Scheme with No Crosswind Diffusion.Finite Element Methods for Convection Dominated Flows,New York:ASME,1979.
  • 10Hughes TJR.Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations.International Journal for Numerical Methods in Fluids,1987,7:1261-1275.

共引文献48

同被引文献91

引证文献13

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部