期刊文献+

MCMC方法下最优Copula的估计及选取 被引量:3

The Estimation and Selection of Optimal Copula Model Based on MCMC Method
在线阅读 下载PDF
导出
摘要 针对目前Copula函数在实际中的应用问题,介绍了一种基于马尔科夫链蒙特卡罗方法(MCMC)的Copula函数估计及选取方法,并将该方法与目前常用方法进行系统比较,最后对上证综合指数和深证成分指数进行了实证分析,结果体现了该法的有效性。 In order to identify the optimal Copula, a new Copula estimation and selection method based on Markov chain Monte Carlo is proposed, and the method is compared with the other methods in popularity. At last, we apply the proposed method to Shanghai Stock Composite Index and Shenzhen Stock Component Index, and the results reflect the effectiveness of the method.
作者 蔡晓薇
出处 《统计与信息论坛》 CSSCI 2011年第10期33-38,共6页 Journal of Statistics and Information
基金 安徽高校省级科学研究项目<安徽省粮食生产空间计量与案例系统仿真研究>(2011SK162)
关键词 COPULA函数 MCMC方法 DIC信息准则 Copula Markov Chain Monte Carlo deviance in ormation criteria
  • 相关文献

参考文献9

  • 1Cherubini U. Copula Methods in Finance[M]. Hoboken:John Wiley, 2004.
  • 2Nelsen B. An introduction to Copulas, Second Edition[M]. New York: Springer, 2006.
  • 3Daniel Berg. Copula Goodness--of--fit Testing: Overview and Power Comparison[J]. Taylor and Francis Journals, 2009, 15(7--8).
  • 4Fermanian J D. Goodness--of--Fit Tests for Copulas[J]. J Multivariate Anal,2005,95(11).
  • 5Ioannis Ntzoufras. Bayesian Modeling Using Winbugs[M]. Canada:John Wiley & Sons, 2009.
  • 6Dani Gamerman, Hedibert Freitas Lopes. Markov Chain Mente Carlo: Stochastic Simulation for Bayesian Inference[M]. Boca Raton:Taylor & Francis, 2006.
  • 7Celeux G, Forbes F, Robert C P, Titterington D M. Deviance Information Criteria for Missing Data Models[J]. Bayes. Anal., 2005,1(4).
  • 8David Huard, Guillaurne Evin, Anne--Catherine Favre. Bayesian Copula Selection[J]. Computational Statistics & Data Analysis, 2006,51 (2).
  • 9Ralph dos Santos Silva, Hedihert Freitas Lopes. Copula, Marginal Distributions and Model Selection: A Bayesian Note [J]. Statistics and Computing,2008,118(3).

同被引文献45

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部