期刊文献+

滚动轴承故障特征的时间—小波能量谱提取方法 被引量:65

Extraction of Rolling Bearing Fault Feature Based on Time-wavelet Energy Spectrum
在线阅读 下载PDF
导出
摘要 振动信号中的周期性冲击现象是诊断滚动轴承各元件故障的重要依据之一,针对滚动轴承故障特征,在小波变换理论基础上提出一种时间—小波能量谱信号处理方法,它能够有效地提取出振动信号中冲击成分的时域和频域特征。利用时间—小波能量谱方法分析正常、外圈故障、内圈故障、滚珠故障等四种状态下滚动轴承的振动信号,并与传统的包络解调分析方法进行对比分析。时间—小波能量谱不仅可以有效提取出冲击特征明显的滚动轴承外圈故障,还能提取出内圈、滚珠等信号特征微弱的滚动轴承故障,而包络解调分析方法只能提取出外圈故障特征而不能提取出滚珠故障、内圈故障特征。结果表明,时间—小波能量普比包络解调分析方法更能有效地提取出振动信号中的冲击信号成分。 Periodic impulse in vibration signals is one of the key indicators to diagnose localized damage of bearing elements.A new method,so called time-wavelet energy spectrum,is proposed for rolling element bearing fault diagnosis.The feature of periodic impulses in both time domain and frequency domain can be extracted effectively by this method.This method is applied to analyzing the vibration signals of bearings under normal and faulty(with damage on outer race,inner race and ball respectively) statuses,and its performance is compared with the traditional envelope demodulation method.It is found that the time-wavelet energy spectrum is more effective in extracting the periodic impulses features produced by localized bearing damage than the envelope demodulation analysis.It can not only extract the relatively significant fault feature of outer race damage,but also extract the weaker fault features of inner race damage and ball damage.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2011年第17期44-49,共6页 Journal of Mechanical Engineering
基金 国家自然科学基金(10702031 50705007) 北京市自然科学基金(3102022)资助项目
关键词 滚动轴承 故障诊断 小波变换 时间—小波能量谱 Rolling element bearing Fault diagnosis Wavelet transform Time-wavelet energy spectrum
  • 相关文献

参考文献9

  • 1冯志鹏,刘立,张文明,褚福磊,宋光雄.基于小波时频框架分解方法的滚动轴承故障诊断[J].振动与冲击,2008,27(2):110-114. 被引量:23
  • 2PENG Zhike, TSEA P W, CHU Fulei. A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing[J]. Mechanical Systems and Signal Processing, 2005(19): 974-988.
  • 3梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1996..
  • 4ABDULLAH M A, DAVID M. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size[J]. Mechanical Systems and Signal Processing, 2006, 20: 1537-1571.
  • 5WANG W J, MCFADDEN P D. Application of orthogonal wavelets to early gear damage detection[J]. Mechanical Systems and Signal Processing, 1995, 9: 497-507.
  • 6WANG W J, MCFADDEN P D. Application of wavelets to gear box vibration signals for fault detection[J]. Journal of Sound and Vibration, 1996, 192: 927-937.
  • 7彭志科,何永勇,褚福磊.小波尺度谱在振动信号分析中的应用研究[J].机械工程学报,2002,38(3):122-126. 被引量:26
  • 8DAUBECHIES I. The wavelet transform, time--frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5). 961-1005.
  • 9林京,屈梁生.基于连续小波变换的信号检测技术与故障诊断[J].机械工程学报,2000,36(12):95-100. 被引量:76

二级参考文献17

共引文献154

同被引文献548

引证文献65

二级引证文献511

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部