期刊文献+

跨音速压气机转子叶表和端壁抽吸对比研究 被引量:9

Comparison of BLS on Blade Surface & End-Wall for a Transonic Compressor Rotor
原文传递
导出
摘要 以NASA Rotor35为研究对象,应用数值模拟手段深入分析了该转子在近失速工况的流动特征,针对其叶片吸力面附面层分离和上端壁处严重的二次流动,对比研究了叶表抽吸和上端壁抽吸对该转子流场结构以及气动性能的影响。计算结果表明:两种抽吸形式均使压气机的压比和效率有所提高。叶表抽吸可有效控制叶片通道激波,减小叶片吸力面的分离区,其最佳位置位于通道激波之后附面层发展处,在最佳抽吸量时压比提高了1.85%,效率提高了8.53%。上端壁抽吸有效地改善了近端壁区域的进出口气流角,其最佳位置位于叶片近前缘处,在最佳抽吸量时压比提高了0 86%,效率提高了4 54%。 A numerical simulation has performed to study the flow structure of the NASA Rotor35 in the near stall condition. For the boundary layer separation on blade suction surface and serious secondary flow near the end-wall, the effect of boundary layer suction (BLS) on the flow structure and performance of the supersonic compressor rotor have been investigated by two forms of suction: blade surface suction and the end-wall suction. The results show that: pressure ratio and efficiency of the compressor are all improved by the two forms of suction. By blade surface suction, the position of the shockwave can be changed, and the separation region is effectively reduced. The optimal position of blade suction is after the channel shockwave and where the boundary layer thickness has developed. Compared with the condition of no suction, the total pressure ratio increases 1.85% and efficiency increases 8.53% at the optimal suction flow rate. The inlet and exit flow angle has been improved by end-wall suction effectively and the optimal position of the end-wall suction is near the blade leading edge. The total pressure ratio increases 0.86% and efficiency increases 4.54% at the optimal suction flow rate with end-wall suction.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第11期1843-1846,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金项目(No.50806061) 西北工业大学翱翔之星计划项目
关键词 跨音速压气机 附面层抽吸 抽吸位置 抽吸量 transonic compressor boundary layer suction suction position suction flow rate
  • 相关文献

参考文献5

  • 1Kerrebrock J L, Reijnen D P, Ziminsky W S, et al. Aspirated Compressors [R]. ASME 97-GT-525, 1997.
  • 2Kerrebrock J L, Drela M, Merchant A, et al. A Family of Design for Aspirated Compressors [R]. ASME 98-GT-198, 1998.
  • 3王掩刚,程荣辉,兰发祥,刘波.吸附式叶栅抽吸流与激波相干性研究[J].燃气涡轮试验与研究,2008(2):15-18. 被引量:9
  • 4张华良,谭春青,张新敬,王松涛,王仲奇.采用附面层抽吸(BLS)控制流动分离的数值模拟[J].推进技术,2009,30(2):192-196. 被引量:24
  • 5Reid L, Moore R D. Performance of Single-Stage Axial- Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 1.82 [R]. NASA-TP-1338, 1978.

二级参考文献13

  • 1周海,李秋实,陆亚钧.跨音风扇转子叶片抽吸气数值实验探索[J].航空动力学报,2004,19(3):408-412. 被引量:34
  • 2陈浮,宋彦萍,赵桂杰,刘军,王仲奇.附面层吸除对压气机叶栅稠度特性影响[J].工程热物理学报,2005,26(2):211-215. 被引量:21
  • 3Wennerstrom A J.Highly loaded axial flow compressor:history and current development[J].Journal of Turbomachinery,1990,112(10).
  • 4Kerrebrock J L,Reijnan D P,Ziminsky W S,et al.Aspirated compressors[R].ASME 97-GT-525.
  • 5Merchant A.Aerodynamic design and performance of aspirated airfoils[R].ASME 2002-GT-30369.
  • 6Wang S T,Qiang X Q,Lin W C,et al.Highly-loaded low-reaction boundary layer suction axial flow compressor[R].ASME 2007-GT-28191.
  • 7Zhang H L,Wang S T,Wang Z Q.Variation of vortex structure in compressor cascade at different incidences[J].Journal of Propulsion and Power,2007,23(1).
  • 8SONG Y P,CHEN F,YANG J,et al.A numerical investigation of boundary layer suction in compound lean compressor cascades[R].ASME 2005-GT-68441.
  • 9Kerrebrock J L,Reijnen D P,Ziminsky W S,et al. Aspirated compressor[R]. ASME 97-GT-525,1997.
  • 10Merchant A A,Drela M,Kerrebrock J L,et al. Aerodynamic Design and Analysis of a High Pressure Ratio Aspirated Compressor Stage[R]. ASME 2000-GT-619,2000.

共引文献31

同被引文献61

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部