期刊文献+

基于Gabor滤波和神经网络的人脸检测方法研究 被引量:7

A New and Better Face Detection Algorithm Using Gabor Filter and Neural Network
在线阅读 下载PDF
导出
摘要 文章针对复杂背景下彩色图像中人脸检测算法复杂度大、计算时间长的问题,提出了一种改进方法。对输入图像进行自适应光照补偿,按色彩变化建立YCbCr肤色模型,筛选潜在人脸区域;对该区域进行Gabor滤波获得图像特征向量,用主成分析法对其降维;利用经训练的神经网络对候选区域进行判别。仿真实验表明该方法检测算法复杂度明显降低,精度可以达到95%以上。 Aim. The introduction of the full paper reviews some papers in the open literature and then, keeping in mind their two major shortcomings, proposes the research mentioned in the.title, which we believe to be new and better and which is explained in sections 1 thorough 6. The core of our explanation consists of: "with our algorithm, we can solve the problem of face detection in color images or in complex background. First, we make the self-adaptive lighting compensation, build the YCb Cr face model using nonlinear color transformation, and confirm the possible face region. Then we use Gabor filter for the possible face region to obtain image feature vector which will reduce the number of dimensions used in PCA ( principal component analysis) method. Lastly, we distinguish the possible region with neural network. " Simulation results, presented in Figs. 7 and 8, in section 6, and the comparison of these results, presented in Table 1 in section 5, show preliminarily that our algorithm can indeed reduce complexity and improve precision; the examination precision reaches as high as 95 %.
作者 曲仕茹 熊波
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2011年第5期690-694,共5页 Journal of Northwestern Polytechnical University
基金 博士点基金(博导类)(20096102110027)资助
关键词 GABOR滤波 肤色模型 神经网络 人脸检测 algorithms, feature extraction, independent component analysis, models, neural networks, simulation, face detection, face model, Gabor filter, principal component analysis(PCA)
  • 相关文献

参考文献6

二级参考文献77

  • 1刘明宝.人脸检测与跟踪的研究:博士学位论文[M].哈尔滨:哈尔滨工业大学,1997..
  • 2羊昌荛.电视原理[M].北京:人民邮电出版社,1988..
  • 3[1]Rowley H,Baluja S,Kanade T.Neural network-based face detecti on[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(1):23~28.
  • 4[2]Yang M H,Ahuja N,Kriegman D.Face detection using a mixture of factor a nalyzers [A].International Conference on Image Processing,Kobe,Japan,1999
  • 5[3]Colmenarez A J,Huang T S.Face detection with information-based maximum discrimination [A].Computer Society Vision and Pattern Recognition,an Jun ,uerto Rico,1997.
  • 6[4]Yang M H,Ahuja N,Kriegman D.Mixtures of linear subspaces for face dete ction [A].International Conference on Automatic Face and Gesture Recognition ,Kerkyra,Greece,2000.
  • 7[5]Yang M H,Roth D,Ahuja N.A SNoW-based face detcetor [A].Advances in Neural Information Processing Systems,Cambridge,2000.
  • 8Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 9Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 10Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017

共引文献431

同被引文献45

引证文献7

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部