期刊文献+

煤层气井动态产能拟合与预测模型 被引量:23

Fitting and predicting models for coalbed methane wells dynamic productivity
在线阅读 下载PDF
导出
摘要 基于现代人工智能理论和数理统计理论,建立了煤层气井动态产能拟合和预测的时间序列BP神经网络模型和月产/累产比值模型,并通过实例分别验证其在煤层气井产能拟合和预测中的有效性。应用实例表明,这两类模型均能很好地拟合煤层气井的生产历史,并能进行准确定量预测,但各有差别。其中神经网络模型对数据点具有极高的拟合程度,且短期预测精度高,但中长期预测精度较差,因此,该模型适合对产气不稳定的气井进行短期产能预测;月产/累产比值模型对月产/累产比值的整体变化趋势具有较高的拟合程度,且中长期预测精度高,但模型的有效性取决于气井产能的稳定性,因此,该模型适用于预测产气稳定的气井产能。 Based on modern artificial intelligence theory and mathematical statistics theory,BP neural network model and monthly/cumulative production model for fitting and predicting coalbed methane(CBM) wells productivity were established to verify the validity of these models by examples.The application results show that two models can match production data of CBM wells and quantitatively predict it.BP neural network model has high accuracy in matching the data points of gas production and predicting well productivity in a short term but not in a long term.Thus,this model is appropriate for the short-term predictions for productivity of CBM wells,even though the wells with unsteady gas production.Monthly/cumulative production ratio model has high accuracy in matching the change trend of monthly/cumulative production ratio and predicting well productivity not only in a short term but also in a medium-long term.However,the validation of this model is determined by the exponential relationship between monthly/cumulative production ratio and production time.Therefore,this model is very suitable for predicting the futural productivity of CBM wells with stable gas production during the past.
出处 《煤炭学报》 EI CAS CSCD 北大核心 2011年第9期1481-1485,共5页 Journal of China Coal Society
基金 国家科技重大专项资助项目(2011ZX05038-001) 国家重点基础研究发展规划(973)资助项目(2009CB219604) 中央高校基本科研业务费专项资金资助项目(2011PY0211)
关键词 煤层气 动态产能 拟合与预测模型 神经网络 月产/累产比值 coalbed methane dynamic productivity fitting and predicting model neural network monthly/cumulative production ratio
  • 相关文献

参考文献18

  • 1张培河.煤层气井产能分级方案研究[J].中国煤层气,2007,4(1):28-29. 被引量:23
  • 2杨永国,秦勇.煤层气产能预测随机动态模型及应用研究[J].煤炭学报,2001,26(2):122-125. 被引量:17
  • 3Aminian K, Ameri S, Bhavsar A, et al. Type curves for coalbed methane production prediction[ J]. SPE 91d82.
  • 4Aminian K, Ameri S, Bhavsar A, et al. Type curves for production prediction and evaluation of coalbed methane reservoirs [ J ]. SPE 97957.
  • 5King G R. Material-balance techniques for coal-seana and devonian shale gas reservoirs with limited water influx[ J]. SPE Reservoir Engineering, 1993:67-72.
  • 6Ahmed T, Centilmen A, Roux B. A generalized material balance equation for coalbed methane reservoirs[ J]. SPE 102638.
  • 7张健,汪志明.物质平衡法在煤层气藏生产动态预测中的应用[J].煤田地质与勘探,2009,37(3):23-26. 被引量:23
  • 8Seidle J P, Arri L E. Use of conventional reservoir models for coalbed methane simulation [ J ]. SPE 21599.
  • 9Pekot L J, Reeves S R. Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon seques- tration [ A ]. Proceedings of the 2003 International Coalbed Methane Symposium [ C ]. Tuscaloosa : University of Alabama,2003.
  • 10Manik J, Ertekin T, Kohler T E. Development and validation of a compositional coalbed simulator[ J ]. Journal of Canadian Petroleum Technology,2002,41 (4) :39-45.

二级参考文献56

共引文献107

同被引文献301

引证文献23

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部